Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the localization methods for the discontinuity lines of a noisy function of two variables. The function is assumed to have countably many discontinuity lines: finitely many discontinuity lines have “large” jump, and the jumps at the remaining discontinuity lines satisfy some smallness condition. It is required, from the noisy function and the error in $L_2$, to determine the number and localize the position of the discontinuity lines that form the first set for the exact function. The problem under consideration belongs to the class of nonlinear ill-posed problems, and for solution we have to construct regularizing algorithms. We propose a simplified theoretical approach when conditions on the exact function are imposed in a narrow strip intersecting the discontinuity lines. We construct methods for the averaging and localization of discontinuity lines and obtain estimates for the accuracy of the localization.
Keywords: ill-posed problem, regularization algorithm, localization of singularities, equation of the first kind, discontinuity line.
@article{SJIM_2015_18_2_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 3
EP  - 11
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/
LA  - ru
ID  - SJIM_2015_18_2_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 3-11
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/
%G ru
%F SJIM_2015_18_2_a0
A. L. Ageev; T. V. Antonova. Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/

[1] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[2] Furman Ya. A. i dr., Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[4] Vasin V. V., Ageev A. L., Ill-Posed Problems with a Priori Information, VSP, Utrecht, 1995 | MR | Zbl

[5] Antonova T. V., “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvukh peremennykh”, Sib. zhurn. vychisl. matematiki, 15:4 (2012), 345–357 | Zbl

[6] Ageev A. L., Antonova T. V., “Approksimatsiya linii razryva zashumlennoi funktsii dvukh peremennykh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | MR

[7] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1 roda po zashumlennym dannym”, Izv. vuzov. Matematika, 2001, no. 7, 65–68 | MR | Zbl

[8] Antonova T. V., “Approximation of function with finite number of discontinuities by noised data”, J. Inverse Ill-Posed Probl., 10:2 (2002), 113–123 | DOI | MR | Zbl

[9] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 48:8 (2008), 1362–1370 | MR | Zbl

[10] Ageev A. L., Antonova T. V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 30–45

[11] Ageev A. L., Antonova T. V., “O lokalizatsii razryvov pervogo roda dlya funktsii ogranichennoi variatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 56–68

[12] Ageev A. L., Antonova T. V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl