Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_2_a0, author = {A. L. Ageev and T. V. Antonova}, title = {Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {3--11}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/} }
TY - JOUR AU - A. L. Ageev AU - T. V. Antonova TI - Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 3 EP - 11 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/ LA - ru ID - SJIM_2015_18_2_a0 ER -
%0 Journal Article %A A. L. Ageev %A T. V. Antonova %T Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities %J Sibirskij žurnal industrialʹnoj matematiki %D 2015 %P 3-11 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/ %G ru %F SJIM_2015_18_2_a0
A. L. Ageev; T. V. Antonova. Methods for the approximating the discontinuity lines of a~noisy function of two variables with countably many singularities. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a0/
[1] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005
[2] Furman Ya. A. i dr., Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002
[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR
[4] Vasin V. V., Ageev A. L., Ill-Posed Problems with a Priori Information, VSP, Utrecht, 1995 | MR | Zbl
[5] Antonova T. V., “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvukh peremennykh”, Sib. zhurn. vychisl. matematiki, 15:4 (2012), 345–357 | Zbl
[6] Ageev A. L., Antonova T. V., “Approksimatsiya linii razryva zashumlennoi funktsii dvukh peremennykh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | MR
[7] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1 roda po zashumlennym dannym”, Izv. vuzov. Matematika, 2001, no. 7, 65–68 | MR | Zbl
[8] Antonova T. V., “Approximation of function with finite number of discontinuities by noised data”, J. Inverse Ill-Posed Probl., 10:2 (2002), 113–123 | DOI | MR | Zbl
[9] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 48:8 (2008), 1362–1370 | MR | Zbl
[10] Ageev A. L., Antonova T. V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 30–45
[11] Ageev A. L., Antonova T. V., “O lokalizatsii razryvov pervogo roda dlya funktsii ogranichennoi variatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 56–68
[12] Ageev A. L., Antonova T. V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl