An approach to the determination of the hydraulic resistance coefficient for a~pipeline section under an unsteady flow regime
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the determination of the value of the hydraulic resistance coefficient of a linear section of a main pipeline. The problem under consideration is reduced to a finite-dimensional optimization problem, for solving which we propose to use first-order numerical methods. We deduce formulas for the components of the gradient of the objective functional in the space of identifiable parameters. The results of the implemented numerical experiments are given.
Keywords: hyperbolic equation, inverse problem, first-order optimization method, gradient of a functional.
Mots-clés : hydraulic resistance coefficient, adjoint problem
@article{SJIM_2015_18_1_a6,
     author = {S. Z. Kuliev},
     title = {An approach to the determination of the hydraulic resistance coefficient for a~pipeline section under an unsteady flow regime},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a6/}
}
TY  - JOUR
AU  - S. Z. Kuliev
TI  - An approach to the determination of the hydraulic resistance coefficient for a~pipeline section under an unsteady flow regime
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 84
EP  - 94
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a6/
LA  - ru
ID  - SJIM_2015_18_1_a6
ER  - 
%0 Journal Article
%A S. Z. Kuliev
%T An approach to the determination of the hydraulic resistance coefficient for a~pipeline section under an unsteady flow regime
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 84-94
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a6/
%G ru
%F SJIM_2015_18_1_a6
S. Z. Kuliev. An approach to the determination of the hydraulic resistance coefficient for a~pipeline section under an unsteady flow regime. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a6/

[1] Guseinzade M. A., Yufin V. A., Neustanovivsheesya dvizhenie nefti i gaza v magistralnykh truboprovodakh, Nedra, M., 1981

[2] Charnyi I. A., Neustanovivsheesya dvizhenie realnoi zhidkosti v trubakh, Nedra, M., 1975

[3] Aliev R. A., Belousov V. D., Nemudrov A. G., Yufin V. A., Yakovlev E. I., Truboprovodnyi transport nefti i gaza, Nedra, M., 1988

[4] Mikhailov V. V., “Utochnennaya formula dlya rascheta koeffitsienta gidravlicheskogo soprotivleniya truboprovodov”, Izv. RAN. Mekhanika zhidkosti i gaza, 2001, no. 4, 159–161

[5] Silash A. P., Dobycha i transport nefti i gaza, Nedra, M., 1980

[6] Geier V. G., Dulin V. S., Zarya A. N., Gidravlika i gidroprivod, Nedra, M., 1991

[7] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[8] Ashrafova E. R., Mamedov V. M., “Chislennoe issledovanie sostoyaniya evolyutsionnykh protsessov pri nezadannykh nachalnykh usloviyakh”, Izv. NAN Azerbaidzhana. Ser. fiz.-mat. nauki, 33:6 (2013), 30–38 | MR

[9] Aida-zade K. R., Kuliev S. Z., “Chislennoe reshenie nelineinykh koeffitsientno-obratnykh zadach dlya obyknovennykh differentsialnykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 51:5 (2011), 858–871 | MR

[10] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985 | MR

[11] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[12] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR