An ingression problem for the systems of equations of a~viscous heat-conducting gas in time-increasing noncylindrical domains
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 28-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The global solvability of an ingression problem for the complete system of equations describing one-dimensional nonstationary flow of a viscous heat-conducting gas in time-increasing noncylindrical domains is proved. The proof of the existence and uniqueness theorem of the total solution with respect to time is connected with obtaining a priori estimates in which the constants depend only on the data of the problem and the length of the time interval $T$ but do not depend on the existence interval of a local solution.
Keywords: system of the Navier–Stokes equations, heat-conducting gas, global solvability, time-increasing non-cylindrical domains.
@article{SJIM_2015_18_1_a2,
     author = {I. A. Kaliev and A. A. Shukhardin and G. S. Sabitova},
     title = {An ingression problem for the systems of equations of a~viscous heat-conducting gas in time-increasing noncylindrical domains},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {28--44},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a2/}
}
TY  - JOUR
AU  - I. A. Kaliev
AU  - A. A. Shukhardin
AU  - G. S. Sabitova
TI  - An ingression problem for the systems of equations of a~viscous heat-conducting gas in time-increasing noncylindrical domains
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 28
EP  - 44
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a2/
LA  - ru
ID  - SJIM_2015_18_1_a2
ER  - 
%0 Journal Article
%A I. A. Kaliev
%A A. A. Shukhardin
%A G. S. Sabitova
%T An ingression problem for the systems of equations of a~viscous heat-conducting gas in time-increasing noncylindrical domains
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 28-44
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a2/
%G ru
%F SJIM_2015_18_1_a2
I. A. Kaliev; A. A. Shukhardin; G. S. Sabitova. An ingression problem for the systems of equations of a~viscous heat-conducting gas in time-increasing noncylindrical domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 28-44. http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a2/

[1] Kaliev I. A., Kazhikhov A. V., “Well-posedness of a gas-solid phase transition problem”, J. Math. Fluid Mech., 1:3 (1999), 282–308 | DOI | MR | Zbl

[2] Kazhikhov A. V., “O globalnoi razreshimosti odnomernykh kraevykh zadach dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy, 24, 1976, 45–61

[3] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[4] Kaliev I. A., Podkuiko M. S., “Ob odnoi granichnoi zadache dlya uravnenii vyazkogo teploprovodnogo gaza v netsilindricheskikh ubyvayuschikh so vremenem oblastyakh”, Differents. uravneniya, 42:10 (2006), 1356–1374 | MR | Zbl

[5] Kaliev I. A., Podkuiko M. S., “Nonhomogeneous boundary value problems for equations of viscous heat-conducting gas in time-decreazing non-rectangular domains”, J. Math. Fluid Mech., 10:2 (2008), 176–202 | DOI | MR | Zbl

[6] Vaigant V. A., “Neodnorodnye granichnye zadachi dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy, 97, 1990, 3–21 | MR