Stationary solutions to the equations describing the nonisothermic electrical convection of a~weak-conductive incompressible polymeric fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model describing flows of a weak-conductive polymeric fluid in a horizontal condenser (channel) is created. Stationary solutions to this model are found.
Keywords: incompressible polymeric fluid, nonisothermic flow, stationary flow of polymeric fluid.
@article{SJIM_2015_18_1_a0,
     author = {A. M. Blokhin and A. S. Rudometova},
     title = {Stationary solutions to the equations describing the nonisothermic electrical convection of a~weak-conductive incompressible polymeric fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - A. S. Rudometova
TI  - Stationary solutions to the equations describing the nonisothermic electrical convection of a~weak-conductive incompressible polymeric fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 3
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a0/
LA  - ru
ID  - SJIM_2015_18_1_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A A. S. Rudometova
%T Stationary solutions to the equations describing the nonisothermic electrical convection of a~weak-conductive incompressible polymeric fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 3-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a0/
%G ru
%F SJIM_2015_18_1_a0
A. M. Blokhin; A. S. Rudometova. Stationary solutions to the equations describing the nonisothermic electrical convection of a~weak-conductive incompressible polymeric fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a0/

[1] Mordvinov A. N., Smorodin B. L., “Elektrokonvektsiya pri inzhektsii s katoda i nagreve sverkhu”, Zhurn. eksperiment. i teor. fiziki, 141:5 (2012), 997–1005

[2] Taraut A. V., Smorodin B. L., “Elektrokonvektsiya pri nalichii avtonomnoi unipolyarnoi inzhektsii i ostatochnoi provodimosti”, Zhurn. eksperiment. i teor. fiziki, 142:2 (2012), 403–412

[3] Smorodin B. L., Taraut A. V., “Dinamika volnovykh elektrokonvektivnykh techenii v modulirovannom elektricheskom pole”, Zhurn. eksperiment. i teor. fiziki, 145:1 (2014), 180–188 | DOI

[4] Altukhov Yu. A., Gusev A. S., Pyshnograi G. V., Vvedenie v mezoskopicheskuyu teoriyu tekuchikh polimernykh sistem, izd. AltGPA, Barnaul, 2012

[5] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[6] Bambaeva N. V., Blokhin A. M., “Statsionarnye resheniya uravnenii neszhimaemoi vyazkouprugoi polimernoi zhidkosti”, Zhurn. vychisl. matematiki i mat. fiziki, 54:5 (2014), 845–870 | DOI | MR | Zbl