Approximate recovery of a~function given in a~domain with low refraction from the ray integrals of the function
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an approach to the recovery of a function given in a Riemannian domain with low refraction from the ray integrals of the function. We construct an inversion algorithm with the use of the back-projection operator and the fast Fourier transform. The algorithm is investigated by numerical methods.
Keywords: tomography, ray transform, back-projection operator
Mots-clés : refraction, inversion formula, fast Fourier transform.
@article{SJIM_2014_17_4_a4,
     author = {E. Yu. Derevtsov and S. V. Maltseva and I. E. Svetov},
     title = {Approximate recovery of a~function given in a~domain with low refraction from the ray integrals of the function},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a4/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - S. V. Maltseva
AU  - I. E. Svetov
TI  - Approximate recovery of a~function given in a~domain with low refraction from the ray integrals of the function
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 48
EP  - 59
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a4/
LA  - ru
ID  - SJIM_2014_17_4_a4
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A S. V. Maltseva
%A I. E. Svetov
%T Approximate recovery of a~function given in a~domain with low refraction from the ray integrals of the function
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 48-59
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a4/
%G ru
%F SJIM_2014_17_4_a4
E. Yu. Derevtsov; S. V. Maltseva; I. E. Svetov. Approximate recovery of a~function given in a~domain with low refraction from the ray integrals of the function. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 48-59. http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a4/

[1] Radon J., “Über die Bestimmung von Funktionen durch ihre Integrabwerte längs gewisser Man-nigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math. Nat. Kl., 69 (1917), 262–277 | MR | Zbl

[2] Deans S., The Radon Transform and Some of its Applications, Wiley, N.Y., 1983 | MR | Zbl

[3] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[4] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission 2D-tomography problem for a medium with absorption and refraction”, J. Inverse Ill-Posed Probl., 7:1 (1999), 83–103 | DOI | MR | Zbl

[5] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., “Ispolzovanie B-splainov v zadache emissionnoi 2D-tomografii v refragiruyuschei srede”, Sib. zhurn. industr. matematiki, 11:3(35) (2008), 45–60 | MR | Zbl

[6] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Math. Comput. Simulation, 97 (2014), 207–223 | DOI | MR

[7] Louis A. K., “Approximate inverse for linear and some nonlinear problems”, Inverse Probl., 12 (1996), 175–190 | DOI | MR | Zbl

[8] Derevtsov E. Yu., Dietz R., Louis A. K., Schuster T., “Influence of refraction to the accuracy of a solution for the 2D-emission tomography problem”, J. Inverse Ill-Posed Probl., 8:2 (2000), 161–191 | DOI | MR | Zbl

[9] Pikalov V. V., “Vosstanovlenie tomogrammy prozrachnoi neodnorodnosti metodom obraschennoi volny”, Optika i spektroskopiya, 65:4 (1988), 956–962

[10] Louis A. K., “Eikonal Approximation in Ultrasound Computerized Tomography Signal Processing. II”, Control and Applications, Springer, N.Y., 1990, 285–291 | MR

[11] Pfitzenreiter T., Schuster T., “Tomographic reconstruction of the curl and divergence of 2D vector fields taking refractions into account”, SIAM J. Imaging Sci., 4 (2011), 40–56 | DOI | MR | Zbl

[12] Romanov V. G., “O vosstanovlenii funktsii cherez integraly po semeistvu krivykh”, Sib. mat. zhurn., 8:5 (1967), 1206–1208 | MR | Zbl

[13] Cormack A. M., “The Radon transform on a family of curves in the plane. I”, Proc. AMS, 83:2 (1981), 325–330 | DOI | MR | Zbl

[14] Cormack A. M., “The Radon transform on a family of curves in the plane. II”, Proc. AMS, 86:2 (1982), 293–298 | DOI | MR | Zbl

[15] Statisticheskie metody dlya EVM, Nauka, M., 1986 | MR

[16] Yano K., Bokhner S., Krivizna i chisla Betti, Izd-vo inostr. lit., M., 1957

[17] Lans Dzh. N., Chislennye metody dlya bystrodeistvuyuschikh mashin, Izd-vo inostr. lit., M., 1962