A stationary flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some boundary-value problem for a quasilinear elliptic equation is posed. The solution to this problem defines the velocity profile for a stationary flow of an incompressible viscoelastic polymeric fluid through a tube having elliptical cross section. The problem is solved numerically with the use of a nonlocal algorithm without saturation.
Keywords: rheological model, boundary value problem, quasilinear elliptic equation, nonlocal numerical method.
@article{SJIM_2014_17_4_a3,
     author = {A. M. Blokhin and B. V. Semisalov},
     title = {A stationary flow of an incompressible viscoelastic polymeric fluid through a~channel with elliptical cross section},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a3/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - B. V. Semisalov
TI  - A stationary flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 38
EP  - 47
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a3/
LA  - ru
ID  - SJIM_2014_17_4_a3
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A B. V. Semisalov
%T A stationary flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 38-47
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a3/
%G ru
%F SJIM_2014_17_4_a3
A. M. Blokhin; B. V. Semisalov. A stationary flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 38-47. http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a3/

[1] Altukhov Yu. A., Gusev A. S., Pyshnograi G. V., Vvedenie v mezoskopicheskuyu teoriyu tekuchesti polimernykh sistem, izd. AltGPA, Barnaul, 2012

[2] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[3] Golovicheva I. E., Pyshnograi G. V., Popov V. I., “Obobschenie zakona Puazeilya na osnove reologicheskogo opredelyayuschego sootnosheniya polimernykh zhidkostei”, Prikl. mekhanika i tekhn. fizika, 40:5 (1999), 158–163 | Zbl

[4] Kuznetsova Yu. L., Skulskii O. N., Pyshnograi G. V., “Techenie nelineinoi uprugovyazkoi zhidkosti v ploskom kanale pod deistviem zadannogo gradienta davleniya”, Vychisl. mekhanika sploshnykh sred, 3:2 (2010), 55–69

[5] Blokhin A. M., Bambaeva N. V., “Statsionarnye resheniya uravnenii neszhimaemoi vyazkouprugoi polimernoi zhidkosti”, Zhurn. vychisl. matematiki i mat. fiziki, 54:5 (2014), 845–870 | DOI | MR

[6] Bambaeva N. V., Blokhin A. M., “The $t$-hyperbolicity of a nonstationary system governing flows of polymeric media”, J. Math. Sci., 188:4 (2013), 333–343 | DOI | MR | Zbl

[7] Babenko K. I., Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2002

[8] Semisalov B. V., “Nelokalnyi algoritm poiska reshenii uravneniya Puassona i ego prilozheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 54:7 (2014), 1110–1135 | DOI