Solvability of a~mixed problem for some of higher-order Sobolev-type strongly nonlinear equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 14-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of a mixed initial-boundary value problem for Sobolev-type strongly nonlinear equations of order $2m$ in the space variable. The existence and uniqueness of regular solutions are proved.
Mots-clés : Sobolev-type equation, existence
Keywords: strongly nonlinear divergent and nondivergent equations, mixed problem, regular solution, uniqueness.
@article{SJIM_2014_17_4_a1,
     author = {Sh. Amirov and A. I. Kozhanov},
     title = {Solvability of a~mixed problem for some of higher-order {Sobolev-type} strongly nonlinear equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--30},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a1/}
}
TY  - JOUR
AU  - Sh. Amirov
AU  - A. I. Kozhanov
TI  - Solvability of a~mixed problem for some of higher-order Sobolev-type strongly nonlinear equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 14
EP  - 30
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a1/
LA  - ru
ID  - SJIM_2014_17_4_a1
ER  - 
%0 Journal Article
%A Sh. Amirov
%A A. I. Kozhanov
%T Solvability of a~mixed problem for some of higher-order Sobolev-type strongly nonlinear equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 14-30
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a1/
%G ru
%F SJIM_2014_17_4_a1
Sh. Amirov; A. I. Kozhanov. Solvability of a~mixed problem for some of higher-order Sobolev-type strongly nonlinear equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 14-30. http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a1/

[1] Dafermos C. M., “The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity”, J. Differential Equations, 6:1 (1968), 71–86 | DOI | MR

[2] Filimonov A. M., “Periodicheskieresheniya nekotorykh nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 12:11 (1976), 2076–2084 | MR | Zbl

[3] Ebihara Y., “On some nonlinear evolution equations with the strong dissipation”, J. Differential Equations, 45:3 (1982), 332–355 | DOI | MR | Zbl

[4] Kozhanov A. I., “Smeshannaya zadacha dlya odnogo klassa kvazilineinykh evolyutsionnykh uravnenii tretego poryadka”, Mat. sb., 118(160):4 (1982), 504–522 | MR | Zbl

[5] Artyushin A. N., “O razreshimosti smeshannoi zadachi dlya odnogo klassa silno nelineinykh uravnenii tretego poryadka”, Kraevye zadachi dlya nelineinykh uravnenii, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1982, 92–99

[6] Ebihara Y., “Some evolution equations with linear and quasilinear strong dissipation”, Bull. Central Res. Inst. Fukuoka Univ., 66 (1983), 7–19 | MR | Zbl

[7] Dang Dinh Hai, “On a strongly quasilinear wave equation”, Demonstratio Math., 19:2 (1986), 327–340 | MR | Zbl

[8] Artyushin A. N., “Teorema suschestvovaniya dlya odnogo uravneniya tretego poryadka”, Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1987, 3–9 | MR

[9] Ebihara Y., “On some nonlinear evolution equations with the strong dissipation. I”, J. DifferentIal Equations, 30:2 (1978), 149–164 ; “II”, J. DifferentIal Equations, 34:3 (1979), 339–352 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Kazhikhov A. V., Nikolaev V. B., “K teorii uravnenii Nave–Stoksa vyazkogo gaza s nemonotonnoi funktsiei sostoyaniya”, Dokl. AN SSSR, 246:5 (1979), 1045–1047 | MR | Zbl

[11] Kozhanov A. I., Larkin N. A., Yanenko N. N., “Ob odnoi regulyarizatsii uravnenii peremennogo tipa”, Dokl. AN SSSR, 252:3 (1980), 525–527 | MR | Zbl

[12] Larkin N. A., Novikov V. A., Yanenko N. N., Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR | Zbl

[13] Kozhanov A. I., “Ob odnom klasse nelineinykh uravnenii poryadka $2n+1$”, Neklassicheskie zadachi uravnenii matematicheskoi fiziki, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1982, 96–103 | MR

[14] Artyushin A. N., “Smeshannaya zadacha dlya odnogo uravneniya vysokogo poryadka”, Primenenie metodov funktsionalnogo analiza k neklassicheskim uravneniyam matematicheskoi fiziki, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1983, 135–141

[15] Laptev G. I., “Ob odnom kvazilineinom uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 24:7 (1988), 1270–1272 | MR | Zbl

[16] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[17] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniyakh, URSS, M., 2010

[18] Khudaverdiev K., Veliev A., Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka, izd. Bakinsk. gos. un-ta, Baku, 2010

[19] Sadykhov M. N., Khudaverdiev K. I., “Issledovanie klassicheskogo resheniya odnomernoi smeshannoi zadachi dlya odnogo klassa polulineinykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 51:3 (2011), 436–455 | MR

[20] Bers L., Dzhon A, Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[21] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[22] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[23] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR