Recovering jumps in X-ray tomography
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the boundaries of the discontinuities and the jumps of a piecewise smooth function is considered for X-ray fan tomography. An algorithm of the reconstruction of unknown values and explicit formulas for their calculation are given. The original problem of X-ray tomography is reduced to a problem for a continuous piecewise differentiable function.
Keywords: tomography, determination of discontinuity lines, stability, uniqueness.
@article{SJIM_2014_17_3_a9,
     author = {V. G. Romanov},
     title = {Recovering jumps in {X-ray} tomography},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a9/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Recovering jumps in X-ray tomography
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 98
EP  - 110
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a9/
LA  - ru
ID  - SJIM_2014_17_3_a9
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Recovering jumps in X-ray tomography
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 98-110
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a9/
%G ru
%F SJIM_2014_17_3_a9
V. G. Romanov. Recovering jumps in X-ray tomography. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 98-110. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a9/

[1] Anikonov D. S., “Integro-differential heterogeneity indicator in tomography problem”, J. Inverse Ill-Posed Probl., 7:1 (1999), 17–59 | DOI | MR | Zbl

[2] Anikonov D. S., “Indikator kontaktnykh granits dlya odnoi zadachi integralnoi geometrii”, Sib. mat. zhurn., 49:4 (2008), 739–755 | MR | Zbl

[3] Anikonov D. S., Konovalova D. S., “Zadacha integralnoi geometrii o neizvestnoi granitse dlya puchka pryamykh”, Sib. mat. zhurn., 52:5 (2011), 972–976 | MR

[4] Anikonov D. S., Balakina E. Yu., “Polikhromaticheskii indikator neodnorodnosti neizvestnoi sredy dlya zadachi rentgenovskoi tomografii”, Sib. mat. zhurn., 53:4 (2012), 721–740 | MR | Zbl

[5] Vainberg E. N., Kazak I. A., Faingoiz M. L., “Rentgenovskaya vychislitelnaya tomografiya po metodu obratnogo proetsirovaniya s filtratsiei dvoinym differentsirovaniem”, Defektoskopiya, 1985, no. 2, 31–39

[6] Faridani A., Keinert F., Natterer F., Ritman T. L., Smith K. T., “Local and global tomography”, Signal processing, 23 (1990), 241–255 | DOI | MR | Zbl

[7] Katsevich A. I., Ramm A. G., “New methods for finding values of the jumps of a function from its local tomographic data”, Inverse Problems, 11 (1995), 1005–1023 | DOI | MR | Zbl

[8] Louis A. K., Maass P., “Contour reconstruction in 3-D X-Ray CT”, IEEE Trans. Med. Imag., 12:4 (1993), 109–115 | DOI | MR

[9] Mukhometov R. G., “Zadacha vosstanovleniya dvumernoi rimanovoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl