On the solvability of the second boundary value problem for the Stokes system
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 26-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the second boundary value problem for the Stokes system in the half-space. We prove the theorem on the existence of a solution in Sobolev spaces.
Keywords: elliptic system, boundary value problem, Stokes system, Sobolev space.
@article{SJIM_2014_17_3_a2,
     author = {L. N. Bondar},
     title = {On the solvability of the second boundary value problem for the {Stokes} system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {26--39},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a2/}
}
TY  - JOUR
AU  - L. N. Bondar
TI  - On the solvability of the second boundary value problem for the Stokes system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 26
EP  - 39
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a2/
LA  - ru
ID  - SJIM_2014_17_3_a2
ER  - 
%0 Journal Article
%A L. N. Bondar
%T On the solvability of the second boundary value problem for the Stokes system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 26-39
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a2/
%G ru
%F SJIM_2014_17_3_a2
L. N. Bondar. On the solvability of the second boundary value problem for the Stokes system. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 26-39. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a2/

[1] Solonnikov V. A., “Otsenki resheniya odnoi nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Zap. nauch. sem. LOMI, 59, 1976, 178–254 | MR | Zbl

[2] Demidenko G. V., “O neobkhodimykh usloviyakh korrektnosti zadachi Koshi dlya linearizovannoi sistemy Nave–Stoksa”, Sib. mat. zhurn., 29:3 (1988), 186–189 | MR | Zbl

[3] Aleksandrovskii I. L., “Uslovie razreshimosti pervoi kraevoi zadachi dlya linearizovannoi sistemy Nave–Stoksa”, Sib. mat. zhurn., 39:6 (1998), 1211–1224 | MR | Zbl

[4] Demidenko G. V., “O korrektnoi razreshimosti kraevykh zadachv poluprostranstve dlya kvaziellipticheskikh uravnenii”, Sib. mat. zhurn., 29:4 (1988), 54–67 | MR | Zbl

[5] Demidenko G. V., “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami. II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl

[6] Demidenko G. V., “On solvability of boundary value problems for quasi-elliptic systems in $R^n_+$”, J. Anal. Appl., 4:1 (2006), 1–11 | DOI | MR | Zbl

[7] Uspenskii S. V., “O predstavlenii funktsii, opredelyaemykh odnim klassom gipoellipticheskikh operatorov”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 117, 1972, 292–299 | MR | Zbl

[8] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998 | MR | Zbl

[9] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 105, 1969, 89–167 | MR | Zbl

[10] Demidenko G. V., “O kvaziellipticheskikh operatorakh v $R_n$”, Sib. mat. zhurn., 39:5 (1998), 1028–1037 | MR | Zbl

[11] Demidenko G. V., “Izomorfnye svoistva odnogo klassa differentsialnykh operatorov i ikh prilozheniya”, Sib. mat. zhurn., 42:5 (2001), 1036–1056 | MR | Zbl

[12] Demidenko G. V., “Kvaziellipticheskie operatory i uravneniya sobolevskogo tipa. II”, Sib. mat. zhurn., 50:5 (2009), 1060–1069 | MR | Zbl