On a~system of nonlinear differential equations of higher dimension
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 111-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Cauchy problem for a system of nonlinear differential equations of higher dimension. We prove that for a sufficiently large number of differential equations, the last component of the solution to the Cauchy problem is an approximate solution to the initial value problem for a delay differential equation.
Keywords: system of nonlinear ordinary differential equations of higher dimension, limit theorem, delay differential equation.
@article{SJIM_2014_17_3_a10,
     author = {I. A. Uvarova},
     title = {On a~system of nonlinear differential equations of higher dimension},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/}
}
TY  - JOUR
AU  - I. A. Uvarova
TI  - On a~system of nonlinear differential equations of higher dimension
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 111
EP  - 121
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/
LA  - ru
ID  - SJIM_2014_17_3_a10
ER  - 
%0 Journal Article
%A I. A. Uvarova
%T On a~system of nonlinear differential equations of higher dimension
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 111-121
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/
%G ru
%F SJIM_2014_17_3_a10
I. A. Uvarova. On a~system of nonlinear differential equations of higher dimension. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 111-121. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/

[1] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983

[2] Khidirov B. N., “Ob odnom podkhode k modelirovaniyu regulyatornykh mekhanizmov zhivykh sistem”, Mat. modelirovanie, 16:7 (2004), 77–91 | MR | Zbl

[3] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadiinogo sinteza bez vetvleniya”, Sib. zhurn. industr. matematiki, 7:1(17) (2004), 73–94 | MR | Zbl

[4] Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Matematicheskoemodelirovanie regulyatornykh konturov gennykh setei”, Zhurn. vychisl. matematiki i mat. fiziki, 44:12 (2004), 2276–2295 | MR | Zbl

[5] Demidenko G. V., Likhoshvai V. A., “O differentsialnykh uravneniyakh s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 46:3 (2005), 538–552 | MR | Zbl

[6] Demidenko G. V., Likhoshvai V. A., Kotova T. V., Khropova Yu. E., “Ob odnom klasse sistem differentsialnykh uravnenii i ob uravneniyakh s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 47:1 (2006), 58–68 | MR | Zbl

[7] Demidenko G. V., Likhoshvai V. A., Mudrov A. V., “O svyazi mezhdu resheniyami differentsialnykh uravnenii s zapazdyvayuschim argumentom i beskonechnomernykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 45:1 (2009), 34–46 | MR | Zbl

[8] Matveeva I. I., “On properties of solutions to a system of differential equations with a parameter”, J. Anal. Appl., 7:2 (2009), 75–84 | MR | Zbl

[9] Demidenko G. V., Melnik I. A., “Ob odnom sposobe approksimatsii reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 51:3 (2010), 528–546 | MR | Zbl

[10] Demidenko G. V., Likhoshvai V. A., Mel'nik I. A., “On properties of solutions to equations of multistage substance synthesis”, J. Anal. Appl., 8:1 (2010), 47–61 | MR | Zbl

[11] Demidenko G. V., Kotova T. V., “Limit properties of solutions to one class of systems of differential equations with parameters”, J. Anal. Appl., 8:2 (2010), 63–74 | MR | Zbl

[12] Kotova T. V., Melnik I. A., O svoistvakh reshenii odnoi nelineinoi sistemy differentsialnykh uravnenii s parametrami, Preprint No 253, In-t matematiki SO RAN, Novosibirsk, 2010, 17 pp.

[13] Melnik I. A., “Ob odnoi nelineinoi sisteme differentsialnykh uravnenii, modeliruyuschei mnogostadiinyi sintez veschestva”, Vestnik TGU. Ser. Estestvennye i tekhnicheskie nauki, 16:5 (2011), 1254–1259

[14] Matveeva I. I., Melnik I. A., “O svoistvakh reshenii odnogo klassa nelineinykh sistem differentsialnykh uravnenii bolshoi razmernosti”, Sib. mat. zhurn., 53:2 (2012), 312–324 | MR | Zbl

[15] Demidenko G. V., “Sistemy differentsialnykh uravnenii vysokoi razmernosti i uravneniya s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 53:6 (2012), 1274–1282 | MR | Zbl

[16] Demidenko G. V., “O klassakh sistem differentsialnykh uravnenii vysokoi razmernosti i uravneniyakh s zapazdyvayuschim argumentom”, Itogi nauki. Yug Rossii. Ser. Matematicheskii forum, 5, izd.YuMI VNTs RAN i RSO-A, Vladikavkaz, 2011, 45–56

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[18] Ivanov V. V., “Razreshimost zadachi Koshi s nachalnymi usloviyami na granitse”, Sib. elektron. mat. izvestiya, 7 (2010), 487–490 URL: http://semr.math.nsc.ru/v7/p487-490.pdf

[19] Likhoshvai V. A., Fadeev S. I., Shtokalo D. N., Ob issledovanii nelineinykh modelei mnogostadiinogo sinteza veschestva, Preprint No 246, In-t matematiki SO RAN, Novosibirsk, 2010, 37 pp.

[20] Vaschenko G. V., Novikov E. A., “Parallelnaya realizatsiya yavnogo metoda Eilera s kontrolem tochnosti vychislenii”, Zhurn. SFU. Ser. Matematika i fizika, 4:1 (2011), 70–76