On a~system of nonlinear differential equations of higher dimension
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 111-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Cauchy problem for a system of nonlinear differential equations of higher dimension. We prove that for a sufficiently large number of differential equations, the last component of the solution to the Cauchy problem is an approximate solution to the initial value problem for a delay differential equation.
Keywords: system of nonlinear ordinary differential equations of higher dimension, limit theorem, delay differential equation.
@article{SJIM_2014_17_3_a10,
     author = {I. A. Uvarova},
     title = {On a~system of nonlinear differential equations of higher dimension},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/}
}
TY  - JOUR
AU  - I. A. Uvarova
TI  - On a~system of nonlinear differential equations of higher dimension
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 111
EP  - 121
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/
LA  - ru
ID  - SJIM_2014_17_3_a10
ER  - 
%0 Journal Article
%A I. A. Uvarova
%T On a~system of nonlinear differential equations of higher dimension
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 111-121
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/
%G ru
%F SJIM_2014_17_3_a10
I. A. Uvarova. On a~system of nonlinear differential equations of higher dimension. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 111-121. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a10/