Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_2_a4, author = {K. V. Voronin}, title = {Numerical study of {MPI/OpenMP} implementation with postman threads for a~three-dimensional splitting scheme in heat transfer problems}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {41--49}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a4/} }
TY - JOUR AU - K. V. Voronin TI - Numerical study of MPI/OpenMP implementation with postman threads for a~three-dimensional splitting scheme in heat transfer problems JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 41 EP - 49 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a4/ LA - ru ID - SJIM_2014_17_2_a4 ER -
%0 Journal Article %A K. V. Voronin %T Numerical study of MPI/OpenMP implementation with postman threads for a~three-dimensional splitting scheme in heat transfer problems %J Sibirskij žurnal industrialʹnoj matematiki %D 2014 %P 41-49 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a4/ %G ru %F SJIM_2014_17_2_a4
K. V. Voronin. Numerical study of MPI/OpenMP implementation with postman threads for a~three-dimensional splitting scheme in heat transfer problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 41-49. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a4/
[1] Mitin I., Kalinkin A., Laevsky Yu., “A parallel iterative solver for positive-definite systems with hybrid MPI-OpenMP parallelization for multi-core clusters”, J. Comput. Sci., 6:3 (2012), 463–468 | DOI
[2] Kandryukova T. A., “O chislennom modelirovanii zadachi filtratsionnogo goreniya gaza na kompyuterakh s obschei pamyatyu”, Trudy Konf. molodykh uchenykh IVMiMG SO RAN, URL: , 2012 http://parbz.sscc.ru/fcp/kmu2012/Kandryukova.pdf
[3] Rabenseifner R., Hager G., Jost G., “Hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP nodes”, Proc. 17 Euromicro Internat. Conf. on Parallel, Distributed and Network-based Processing, Weimar, 2009, 427–436
[4] Kalinkin A., Intel direct sparse solver for clusters, a research project for solving large sparse systems of linear algebraic equations on clusters, URL: http://www.cerfacs.fr/files/cerfacs_algo/conferences/PastWorkshops/SparseDays2013/Kalinkin.pdf
[5] He H., Hybrid OpenMP and MPI Programming and Tuning, URL: http://www.nersc.gov/assets/NUG-Meetings/2004/NUG2004yhehybrid.ppt
[6] Voronin K. V., Laevsky Yu. M., “On splitting schemes in the mixed finite element method”, Numer. Anal. Appl., 5:2 (2012), 150–155 | DOI | Zbl
[7] Voronin K. V., Laevsky Yu. M., “Splitting schemes in the mixed finite-element method for the solution of heat transfer problems”, Math. Models Comput. Simulations, 5:2 (2013), 167–174 | DOI | MR
[8] Vernikovsky V. A., Vernikovsky A. E., Polyansky O. P., Laevsky Yu. M., Matushkin N. Yu., Voronin K. V., “A tectonormalmodel for the formation of an orogen at the post-collisional stage (by the example of the Yenisei Ridge, Eastern Siberia)”, Russian geology and geophysics, 52:1 (2011), 24–39 | DOI
[9] Vernikovskaya A. E., Datsenko V. M., Vernikovsky V. A., Matushkin N. Yu., Laevsky Yu. M., Romanova I. V., Travin A. V., Voronin K. V., Lepekhina E. N., “Magmatism evolution and carbonatitegranite association in the neoproterozoic active continentalmargin of the Siberian craton: Thermochronological reconstructions”, Doklady Earth Sciences, 448:2 (2013), 161–167 | DOI
[10] Raviart P. A., Thomas J. M., “A mixed finite elementmethod for 2-nd order elliptic problems”, Lecture Notes in Math., 606, 1977, 292–315 | DOI | MR | Zbl
[11] Douglas J., Gunn J. E., “A general formulation of alternating direction methods”, Numer. Math., 6 (1964), 428–453 | DOI | MR | Zbl
[12] Siberian Supercomputer Center (SSCC), URL: http://www2.sscc.ru