Reconstruction of the convolution operator from the right-hand side on the real half-axis
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a Volterra integral equation of the first kind in convolutions on a semi-infinite interval. Under rather natural constraints on the kernel and the right-hand side of a Volterra integral equation (the kernel has bounded support and the support of the right-hand side may be unbounded), it is possible to reconstruct the integral operator of the equation (the solution and the kernel of the integral operator) from the right-hand side of the equation. Some uniqueness theorem is proved, as well as necessary and sufficient conditions for solvability and the explicit formulas for the solution and the kernel are obtained.
Keywords: Volterra integral equation of the first kind, uniqueness, reconstruction formula for the convolution operator.
Mots-clés : convolution
@article{SJIM_2014_17_2_a3,
     author = {A. F. Voronin},
     title = {Reconstruction of the convolution operator from the right-hand side on the real half-axis},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--40},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a3/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Reconstruction of the convolution operator from the right-hand side on the real half-axis
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 32
EP  - 40
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a3/
LA  - ru
ID  - SJIM_2014_17_2_a3
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Reconstruction of the convolution operator from the right-hand side on the real half-axis
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 32-40
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a3/
%G ru
%F SJIM_2014_17_2_a3
A. F. Voronin. Reconstruction of the convolution operator from the right-hand side on the real half-axis. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 32-40. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a3/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, M., 1987 | MR | Zbl

[2] Titchmarsh E. Ch., Vvedenie v teoriyu integralov Fure, KomKniga, M., 2007

[3] Voronin A. F., “Sistema uravnenii Volterra pervogo roda v svertkakh na konechnom intervale”, Differents. uravneniya, 37:9 (2001), 1258–1264 | MR | Zbl

[4] Voronin A. F., “Obobschenie teoremy Titchmarsha o nositelyakh v svertke na mnogomernye sistemy uravnenii Volterra pervogo roda v svertkakh”, Differents. uravneniya, 39:3 (2003), 416–417 | MR | Zbl

[5] Voronin A. F., “Vosstanovlenie resheniya uravneniya Volterra 1-go roda na polupryamoi po nepolnym dannym”, Sib. elektronnye mat. izvestiya, 9 (2012), 464–471 URL: http://semr.math.nsc.ru | MR

[6] Voronin A. F., “Integralnoe uravnenie pervogo roda v svertkakh na konechnom intervale s periodicheskim yadrom”, Sib. zhurn. industr. matematiki, 11:1(33) (2008), 46–56 | MR | Zbl

[7] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[8] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi mat. nauk, 13:5(83) (1958), 3–120 | MR | Zbl