A multidimensional inverse problem of determining two coefficients in the acoustic equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 18-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linearized inverse problem of finding the coefficients of the acoustic equation; namely, the problem of determining two functions depending on three space variables, the propagation speed of acoustic waves, and the density of the acoustic medium. Some algorithm is obtained for solving the problem as well as a conditional stability estimate for a solution to the inverse problem.
Keywords: acoustic equation, inverse problem, determination of the density of the acoustic medium and the propagation speed of acoustic waves.
@article{SJIM_2014_17_2_a2,
     author = {T. V. Bugueva},
     title = {A multidimensional inverse problem of determining two coefficients in the acoustic equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a2/}
}
TY  - JOUR
AU  - T. V. Bugueva
TI  - A multidimensional inverse problem of determining two coefficients in the acoustic equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 18
EP  - 31
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a2/
LA  - ru
ID  - SJIM_2014_17_2_a2
ER  - 
%0 Journal Article
%A T. V. Bugueva
%T A multidimensional inverse problem of determining two coefficients in the acoustic equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 18-31
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a2/
%G ru
%F SJIM_2014_17_2_a2
T. V. Bugueva. A multidimensional inverse problem of determining two coefficients in the acoustic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 18-31. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a2/

[1] Romanov V. G., Inverse Problems of Mathematical Physics, VNU Sci. Press, Utrecht, 1987 | MR

[2] Kabanikhin S. I., Obratnaya zadacha dlya uravneniya akustiki: Opredelenie plotnosti sredy, Preprint No 246, VTs SO AN SSSR, Novosibirsk, 1980, 17 pp.

[3] Kabanikhin S. I., “O zadache opredeleniya koeffitsientov uravneniya akustiki”, Neklassicheskie problemy matematicheskoi fiziki, Izd-vo VTs SO AN SSSR, Novosibirsk, 1981, 93–100 | MR

[4] Sacks P. E., “The inverse problem for a weakly inhomogeneous two-dimensional acoustic medium”, SIAM J. Appl. Math., 48:5 (1988), 1167–1193 | DOI | MR | Zbl

[5] Bugueva T. V., “A linearized inverse problem for the wave equation in a sphere”, J. Inverse Ill-Posed Probl., 4:3 (1996), 171–189 | DOI | MR | Zbl

[6] Bugueva T. V., “Some inverse problems for acoustic equation in cylindrical domain”, J. Inverse Ill-Posed Probl., 12:6 (2004), 581–596 | DOI | MR | Zbl

[7] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauch. mir, M., 2005 | MR

[8] Bugueva T. V., “Otsenka uslovnoi ustoichivosti resheniya obratnoi zadachi dlya uravneniya akustiki”, Sib. elektronnye mat. izvestiya, 11 (2014), 142–164 URL: http://semr.math.nsc.ru