Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an accuracy estimate for the Tikhonov regularization method with the regularization parameter chosen by the error principle for solving the problem of finding of the phonon spectrum of a crystal from its heat capacity. A numerical solution of this problem is exposed that reconstructs the “fine structure” of the solution.
Keywords: regularization, continuity modulus, error estimate, ill-posed problem.
@article{SJIM_2014_17_2_a12,
     author = {V. P. Tanana and A. A. Erygina},
     title = {Estimation of the precision for the {Tikhonov} regularization method in solving an inverse problem of solid-state physics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. A. Erygina
TI  - Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 125
EP  - 136
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/
LA  - ru
ID  - SJIM_2014_17_2_a12
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. A. Erygina
%T Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 125-136
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/
%G ru
%F SJIM_2014_17_2_a12
V. P. Tanana; A. A. Erygina. Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-136. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/

[1] Lifshits I. M., “Ob opredelenii energeticheskogo spektra boze-sistemy po ee teploemkosti”, Zhurn. eksperiment. i teor. fiziki, 26:5 (1954), 551–556 | Zbl

[2] Iveronova V. I., Tikhonov A. N., Zaikin P. N., Zvyagina A. P., “Opredelenie fononnogo spektra kristallov po teploemkosti”, Fizika tverdogo tela, 8:12 (1966), 3459–3462

[3] Tanana V. P., Korshunov V. A., “Printsip minimalnykh nevyazok”, Dokl. AN SSSR, 239:4 (1978), 800–803 | MR

[4] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla”, Dokl. AN SSSR, 231:4 (1976), 845–848 | MR

[5] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla. Blagorodnye metally”, Fizika metallov i metallovedenie, 42:3 (1976), 455–463

[6] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla (germanii)”, Fizika tverdogo tela, 18:3 (1976), 654–657

[7] Tanana V. P., Korshunov V. A., “Opredelenie energeticheskogo spektra boze-sistemy po termodinamicheskim funktsiyam”, Zhurn. vychisl. matematiki i mat. fiziki, 18:6 (1978), 1500–1515 | MR

[8] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla (tsink, kadmii, magnii, molibden, volfram)”, Fizika metallov i metallovedenie, 48:5 (1979), 908–915

[9] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[10] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[11] Morozov V. A., “O regulyarizatsii nekorektno postavlennykh zadach i vybore parametra regulyarizatsii”, Zhurn. vychislit. matematiki i mat. fiziki, 6:1 (1966), 170–175 | MR | Zbl

[12] Tanana V. P., Boyarshinov V. V., O edinstvennosi resheniya obratnoi zadachi opredeleniya fononnykh spektrov kristalla, Dep. v VINITI, No 892-B87, 1987

[13] Vasin V. V., Tanana V. P., “Priblizhennoe reshenie operatornogo uravneniya pervogo roda”, Mat. zapiski Uralsk. gos. un-ta, 6:4 (1968), 27–37 | MR | Zbl

[14] Tanana V. P., “Ob optimalnosti metodov resheniya nelineinykh neustoichivykh zadach”, Dokl. AN SSSR, 220:5 (1976), 1035–1037

[15] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Ch. 2, Nauka, M., 1978

[16] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrent'ev method”, J. Inverse Ill-Posed Probl., 18:8 (2011), 935–944 | DOI | MR

[17] Ivanov V. K., Korshunov V. A., Reshetova T. N., Tanana V. P., “O vozmozhnosti opredeleniya energeticheskogo spektra boze-sistemy po termodinamicheskim funktsiyam”, Dokl. AN SSSR, 224:1 (1976), 19–22