Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an accuracy estimate for the Tikhonov regularization method with the regularization parameter chosen by the error principle for solving the problem of finding of the phonon spectrum of a crystal from its heat capacity. A numerical solution of this problem is exposed that reconstructs the “fine structure” of the solution.
Keywords: regularization, continuity modulus, error estimate, ill-posed problem.
@article{SJIM_2014_17_2_a12,
     author = {V. P. Tanana and A. A. Erygina},
     title = {Estimation of the precision for the {Tikhonov} regularization method in solving an inverse problem of solid-state physics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {125--136},
     year = {2014},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. A. Erygina
TI  - Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 125
EP  - 136
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/
LA  - ru
ID  - SJIM_2014_17_2_a12
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. A. Erygina
%T Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 125-136
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/
%G ru
%F SJIM_2014_17_2_a12
V. P. Tanana; A. A. Erygina. Estimation of the precision for the Tikhonov regularization method in solving an inverse problem of solid-state physics. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-136. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a12/

[1] Lifshits I. M., “Ob opredelenii energeticheskogo spektra boze-sistemy po ee teploemkosti”, Zhurn. eksperiment. i teor. fiziki, 26:5 (1954), 551–556 | Zbl

[2] Iveronova V. I., Tikhonov A. N., Zaikin P. N., Zvyagina A. P., “Opredelenie fononnogo spektra kristallov po teploemkosti”, Fizika tverdogo tela, 8:12 (1966), 3459–3462

[3] Tanana V. P., Korshunov V. A., “Printsip minimalnykh nevyazok”, Dokl. AN SSSR, 239:4 (1978), 800–803 | MR

[4] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla”, Dokl. AN SSSR, 231:4 (1976), 845–848 | MR

[5] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla. Blagorodnye metally”, Fizika metallov i metallovedenie, 42:3 (1976), 455–463

[6] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla (germanii)”, Fizika tverdogo tela, 18:3 (1976), 654–657

[7] Tanana V. P., Korshunov V. A., “Opredelenie energeticheskogo spektra boze-sistemy po termodinamicheskim funktsiyam”, Zhurn. vychisl. matematiki i mat. fiziki, 18:6 (1978), 1500–1515 | MR

[8] Korshunov V. A., Tanana V. P., “Opredelenie fononnoi plotnosti sostoyanii po termodinamicheskim funktsiyam kristalla (tsink, kadmii, magnii, molibden, volfram)”, Fizika metallov i metallovedenie, 48:5 (1979), 908–915

[9] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[10] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[11] Morozov V. A., “O regulyarizatsii nekorektno postavlennykh zadach i vybore parametra regulyarizatsii”, Zhurn. vychislit. matematiki i mat. fiziki, 6:1 (1966), 170–175 | MR | Zbl

[12] Tanana V. P., Boyarshinov V. V., O edinstvennosi resheniya obratnoi zadachi opredeleniya fononnykh spektrov kristalla, Dep. v VINITI, No 892-B87, 1987

[13] Vasin V. V., Tanana V. P., “Priblizhennoe reshenie operatornogo uravneniya pervogo roda”, Mat. zapiski Uralsk. gos. un-ta, 6:4 (1968), 27–37 | MR | Zbl

[14] Tanana V. P., “Ob optimalnosti metodov resheniya nelineinykh neustoichivykh zadach”, Dokl. AN SSSR, 220:5 (1976), 1035–1037

[15] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Ch. 2, Nauka, M., 1978

[16] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrent'ev method”, J. Inverse Ill-Posed Probl., 18:8 (2011), 935–944 | DOI | MR

[17] Ivanov V. K., Korshunov V. A., Reshetova T. N., Tanana V. P., “O vozmozhnosti opredeleniya energeticheskogo spektra boze-sistemy po termodinamicheskim funktsiyam”, Dokl. AN SSSR, 224:1 (1976), 19–22