Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_2_a0, author = {D. S. Anikonov and V. G. Nazarov and I. V. Prokhorov}, title = {The integro-differential indicator for a~problem of single-beam tomography}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {3--10}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/} }
TY - JOUR AU - D. S. Anikonov AU - V. G. Nazarov AU - I. V. Prokhorov TI - The integro-differential indicator for a~problem of single-beam tomography JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 3 EP - 10 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/ LA - ru ID - SJIM_2014_17_2_a0 ER -
%0 Journal Article %A D. S. Anikonov %A V. G. Nazarov %A I. V. Prokhorov %T The integro-differential indicator for a~problem of single-beam tomography %J Sibirskij žurnal industrialʹnoj matematiki %D 2014 %P 3-10 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/ %G ru %F SJIM_2014_17_2_a0
D. S. Anikonov; V. G. Nazarov; I. V. Prokhorov. The integro-differential indicator for a~problem of single-beam tomography. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/
[1] Marr D., Hildreth E., “Theory of edge detection”, Proc. Roy. Soc. London. Ser. B. Biological Sciences, 207:1167 (1980), 187–217 | DOI
[2] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Algorithm of finding a body projection within an absorbing and scatteringmedium”, J. Inverse Ill-Posed Probl., 18:8 (2011), 885–893 | MR
[3] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Zadacha odnorakursnogo zondirovaniya neizvestnoi sredy”, Sib. zhurn. industr. matematiki, 14:2(46) (2011), 21–27 | MR | Zbl
[4] Anikonov D. S., Nazarov V. G., “Zadacha dvurakursnoi tomografii”, Zhurn. vychisl. matematiki i mat. fiziki, 52:3 (2012), 372–378 | Zbl
[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950
[6] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000
[7] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Trudy MIAN, 61, 1961, 3–158 | MR
[8] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1976 | MR
[9] Anikonov D. S., Nazarov V. G., Prokhorov I. V., Poorly Visible Media in X-ray Tomography, VSP, Utrecht–Boston, 2002
[10] Hubbell J. H., Seltzer S. M., Tables of X-ray mass attenuation coefficients and mass energyabsorption coefficients 1 Kev to 20 Mev for elements $Z=1$ to 92 and 48 addslional substances of dosimetric interest, NISTIR No 5632, 1995
[11] G. I. Marchuk [i dr.], Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976