The integro-differential indicator for a~problem of single-beam tomography
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article continues the authors' investigations of the problem of X-ray tomography with few radiographic projections (beams). In their previous works, the authors suggested a special integro-differential operators for processing the available information. A new formula for such an operator is proposed. The article contains a theoretical justification of the algorithm and the results of the corresponding numerical experiments.
Keywords: inverse problem, tomography, location, radiation
Mots-clés : transport equation.
@article{SJIM_2014_17_2_a0,
     author = {D. S. Anikonov and V. G. Nazarov and I. V. Prokhorov},
     title = {The integro-differential indicator for a~problem of single-beam tomography},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - V. G. Nazarov
AU  - I. V. Prokhorov
TI  - The integro-differential indicator for a~problem of single-beam tomography
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 3
EP  - 10
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/
LA  - ru
ID  - SJIM_2014_17_2_a0
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A V. G. Nazarov
%A I. V. Prokhorov
%T The integro-differential indicator for a~problem of single-beam tomography
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 3-10
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/
%G ru
%F SJIM_2014_17_2_a0
D. S. Anikonov; V. G. Nazarov; I. V. Prokhorov. The integro-differential indicator for a~problem of single-beam tomography. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a0/

[1] Marr D., Hildreth E., “Theory of edge detection”, Proc. Roy. Soc. London. Ser. B. Biological Sciences, 207:1167 (1980), 187–217 | DOI

[2] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Algorithm of finding a body projection within an absorbing and scatteringmedium”, J. Inverse Ill-Posed Probl., 18:8 (2011), 885–893 | MR

[3] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Zadacha odnorakursnogo zondirovaniya neizvestnoi sredy”, Sib. zhurn. industr. matematiki, 14:2(46) (2011), 21–27 | MR | Zbl

[4] Anikonov D. S., Nazarov V. G., “Zadacha dvurakursnoi tomografii”, Zhurn. vychisl. matematiki i mat. fiziki, 52:3 (2012), 372–378 | Zbl

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[6] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[7] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Trudy MIAN, 61, 1961, 3–158 | MR

[8] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1976 | MR

[9] Anikonov D. S., Nazarov V. G., Prokhorov I. V., Poorly Visible Media in X-ray Tomography, VSP, Utrecht–Boston, 2002

[10] Hubbell J. H., Seltzer S. M., Tables of X-ray mass attenuation coefficients and mass energyabsorption coefficients 1 Kev to 20 Mev for elements $Z=1$ to 92 and 48 addslional substances of dosimetric interest, NISTIR No 5632, 1995

[11] G. I. Marchuk [i dr.], Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976