Estimation of the diffusion-capacitive parameters of a~coal bed by the data of gas pressure measuring in a~borehole based on inverse problem solving
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 78-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A geomechanical model of gas emission from a block-structure coal bed is proposed. The inverse coefficient problem is formulated of finding the initial gas content, diffusion and mass-transfer coefficients by the gage data of the borehole pressure, the solvability of the problem is studied. It is shown that, for the uniqueness of a solution to the inverse problem, additional information is required on the gas-kinetic characteristics of the coal bed.
Keywords: geomechanical model, coal bed, inverse problem, cost function, degassing.
Mots-clés : gas content, diffusion and mass transfer coefficients
@article{SJIM_2014_17_1_a8,
     author = {L. A. Nazarova and L. A. Nazarov and A. L. Karchevsky and M. Vandamme},
     title = {Estimation of the diffusion-capacitive parameters of a~coal bed by the data of gas pressure measuring in a~borehole based on inverse problem solving},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {78--85},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a8/}
}
TY  - JOUR
AU  - L. A. Nazarova
AU  - L. A. Nazarov
AU  - A. L. Karchevsky
AU  - M. Vandamme
TI  - Estimation of the diffusion-capacitive parameters of a~coal bed by the data of gas pressure measuring in a~borehole based on inverse problem solving
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 78
EP  - 85
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a8/
LA  - ru
ID  - SJIM_2014_17_1_a8
ER  - 
%0 Journal Article
%A L. A. Nazarova
%A L. A. Nazarov
%A A. L. Karchevsky
%A M. Vandamme
%T Estimation of the diffusion-capacitive parameters of a~coal bed by the data of gas pressure measuring in a~borehole based on inverse problem solving
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 78-85
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a8/
%G ru
%F SJIM_2014_17_1_a8
L. A. Nazarova; L. A. Nazarov; A. L. Karchevsky; M. Vandamme. Estimation of the diffusion-capacitive parameters of a~coal bed by the data of gas pressure measuring in a~borehole based on inverse problem solving. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 78-85. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a8/

[1] Slastunov S. V., Zablagovremennaya degazatsiya i dobycha metana iz ugolnykh mestorozhdenii, Izd-vo MGGU, M., 1996

[2] Malyshev Yu. N., Airuni A. T., Kompleksnaya degazatsiya ugolnykh shakht, Izd-vo AGN, M., 1999

[3] Rukovodstvo po degazatsii ugolnykh shakht, Utv. MUP SSSR 29.05.1990

[4] Nambo H., “The Abandoned coal mine gas project in Northern Japan”, Proc. 1 Annual Coalbed and Coal Mine Methane Conf., Denver, Colorado, March 27–28, 2001

[5] Rice D. D., Coalbed methane: An untapped energy resource and an environmental concern, U. S. Geological Survey Fact Sheet FS-019-97. URL: , 1997 http://energy.usgs.gov

[6] Rukovodstvo po nailuchshei praktike effektivnoi degazatsii istochnikov metanovydeleniya i utilizatsii metana na ugolnykh shakhtakh, Evropeiskaya ekonomicheskaya komissiya, Partnerstvo “Metan – na rynki”, Organizatsiya Ob'edinennykh Natsii, Nyu-Iork–Zheneva, 2010, (Publikatsii EEK po energetike; No 31)

[7] A Guide to Coalbed Methane Reservoir Engineering, Report GRI-94/0397, Gas Research Institute, Chicago, Illinois, 1994

[8] Teichmuller M., Teichmuller R., “The chemical and structural metamorphosis of coals”, Milestones in Geoscience, Springer, Berlin, 2003, 75–99 | DOI

[9] Seidle J., Fundations of Coalbed Methane Reservoir Engineering, PennWell Books, Tusla, 2011

[10] Khristianovich S. A., “Obosnovakh teorii filtratsii”, Fiziko-tekhn. problemy razrabotki poleznykh iskopaemykh, 1989, no. 5, 3–18

[11] Khristianovich S. A., “Obosnovakh teorii filtratsii”, Fiziko-tekhn. problemy razrabotki poleznykh iskopaemykh, 1991, no. 1, 3–17

[12] Shi J. Q., Durucan S., “A bidisperse pore diffusion model for methane displacement desorption in coal by $\mathrm{CO}_2$ injection”, Fuel, 82:10 (2003), 1219–1229 | DOI

[13] Lunarzewski L., “Gas emission prediction and recovery in underground coal mines”, Internat. J. Coal Geology, 35 (1998), 117–145 | DOI

[14] Ruilin Zh., Lowndes I. S., “The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts”, Internat. J. Coal Geology, 84:1 (2010), 141–152 | DOI

[15] Connell L. D., “Coupled flow and geomechanical processes during gas production from coal seams”, Internat. J. Coal Geology, 79:1–2 (2009), 18–28 | DOI | MR

[16] Computer Modeling Group, 2009. GEM: Advanced Compositional and GHG Reservoir Simulator, User's Guide Version 2009, Alberta–Calgary, 2009

[17] Patton S. B., Fan H., Novak T., Johnson P. W., Sanford R. L., “Simulator for degasification, methane emission prediction and mine ventilation”, Mining Engineering, 46, Part 4 (1994), 341–345

[18] Moridis G. J., Reagan M. T., Santos R., Boyle K., Yang W., Kuzma-Anderson H., Blasingame T. A., Freeman C. M., Ilk D., Cossio M., Bhattacharya S., Nikolaou M., A self-teaching expert system for the analysis, design, and prediction of das production from unconventional gas resources, Document ID: SPE-149485-MS, 2011 | DOI

[19] Oudinot Y., Sultana A., Gonzalez R. R., Reeves S. R., Vormann M., “Development and optimized history-matched models for coalbed methane reservoir”, Abstracts Internat. Coalbed Symp., 2006, 0637 http://www.adv-res.com/pdf/Development of Optimized History-Matched Models for Coalbed Methane Reservoirs - Paper 0637.pdf

[20] Ettinger I. L., Lidin G. D., Dimitiev A. M., Shaupachina E. S., Systematic Handbook for the Determination of the Methane Content of Coal Seams from the Seam Gas Pressure and the Methane Capacity of Coal, USBM Translation No 1501, 1958

[21] Kuznetsov S. V., Krigman R. N., Prirodnaya pronitsaemost ugolnykh plastov i metody ee opredeleniya, Nauka, M., 1978

[22] Khristianovich S. A., Kovalenko Yu. F., “Obizmerenii davleniya gaza v ugolnykh plastakh”, Fiziko-tekhn. problemy razrabotki poleznykh iskopaemykh, 1988, no. 3, 3–24

[23] Golf-Rakht T. D., Osnovy neftepromyslovoi geologii i razrabotki treschinovatykh kollektorov, Nedra, M., 1986

[24] Vengerov I. R., Teplofizika shakht i rudnikov. Matematicheskie modeli, v. 1, Analiz paradigmy, Izd-vo Nord-Press, Donetsk, 2008

[25] Brochard L., Vandamme M., Pellenq R. J.-M., “Poromechanics of microporous medium”, J. Mechanics and Physics of Solids, 60 (2012), 606–622 | DOI | MR | Zbl

[26] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[27] Prognoznyi katalog shakhtoplastov Kuznetskogo ugolnogo basseina s kharakteristikoi gornogeologicheskikh faktorov i yavlenii, Izd. In-ta gornogo dela, M., 1983

[28] Lyakhovitskii F. M., Khmelevskoi V. K., Yaschenko Z. G., Inzhenernaya geofizika, Nedra, M., 1989

[29] Skvazhinnyi televizor, URL: http://byrim.com/burenie/14.html

[30] Alifanov O. M., Obratnye zadachi teploobmena, Mir, M., 1988

[31] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[32] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[33] Romanov V. G., Kabanikhin S. I., Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994 | MR | Zbl

[34] Nazarov L. A., Nazarova L. A., “Opredelenie filtratsionnykh svoistv i napryazhenii v ugolnom plaste na osnove resheniya obratnoi zadachi”, Fiziko-tekhn. problemy razrabotki poleznykh iskopaemykh, 2000, no. 2, 15–22

[35] Karchevsky A. L., “Simultaneous reconstruction of permittivity and conductivity”, J. Inverse Ill-Posed Probl., 17:4 (2009), 385–402 | DOI | MR

[36] Penenko A. V., “Diskretno-analiticheskie skhemy dlya resheniya obratnoi koeffitsientnoi zadachi teploprovodnosti sloistykh sred gradientnymi metodami”, Sib. zhurn. vychislitelnoi matematiki, 15:4 (2012), 393–408

[37] Duchkov A. A., Karchevskii A. L., “Opredelenie glubinnogo teplovogo potoka po dannym monitoringa temperatury donnykh osadkov”, Sib. zhurn. industr. matematiki, 16:3(55) (2013), 61–85

[38] Karchevskii A. L., “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Dokl. AN, 375:2 (2000), 235–238 | Zbl

[39] Australian Standard AS 3980-1999: Guide to the Determination of Gas Content of coal-Direct Desorption Method, Standards Association of Australia, 1999