Optimal control of the rigidity of an inclusion in an elastic body
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 65-77

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional elastic body with an inclusion is considered. There is a crack part of which is situated on the boundary of the inclusion. On the crack edges, there are given boundary conditions of the type of equalities and inequalities. We consider optimal control problem that allows to choose the safest inclusion from the standpoint of Griffith's criterion. An existence theorem of a solution to the optimal control problem is proved.
Keywords: crack, elastic inclusion, optimal control, Griffith's criterion.
@article{SJIM_2014_17_1_a7,
     author = {P. V. Karaul'nyi},
     title = {Optimal control of the rigidity of an inclusion in an elastic body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/}
}
TY  - JOUR
AU  - P. V. Karaul'nyi
TI  - Optimal control of the rigidity of an inclusion in an elastic body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 65
EP  - 77
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/
LA  - ru
ID  - SJIM_2014_17_1_a7
ER  - 
%0 Journal Article
%A P. V. Karaul'nyi
%T Optimal control of the rigidity of an inclusion in an elastic body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 65-77
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/
%G ru
%F SJIM_2014_17_1_a7
P. V. Karaul'nyi. Optimal control of the rigidity of an inclusion in an elastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/