Optimal control of the rigidity of an inclusion in an elastic body
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 65-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional elastic body with an inclusion is considered. There is a crack part of which is situated on the boundary of the inclusion. On the crack edges, there are given boundary conditions of the type of equalities and inequalities. We consider optimal control problem that allows to choose the safest inclusion from the standpoint of Griffith's criterion. An existence theorem of a solution to the optimal control problem is proved.
Keywords: crack, elastic inclusion, optimal control, Griffith's criterion.
@article{SJIM_2014_17_1_a7,
     author = {P. V. Karaul'nyi},
     title = {Optimal control of the rigidity of an inclusion in an elastic body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/}
}
TY  - JOUR
AU  - P. V. Karaul'nyi
TI  - Optimal control of the rigidity of an inclusion in an elastic body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 65
EP  - 77
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/
LA  - ru
ID  - SJIM_2014_17_1_a7
ER  - 
%0 Journal Article
%A P. V. Karaul'nyi
%T Optimal control of the rigidity of an inclusion in an elastic body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 65-77
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/
%G ru
%F SJIM_2014_17_1_a7
P. V. Karaul'nyi. Optimal control of the rigidity of an inclusion in an elastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a7/

[1] Nikolaeva E. A., Osnovy mekhaniki razrusheniya, Izd-vo PGTU, Perm, 2010

[2] Selivanov V. V., Mekhanika razrusheniya deformiruemogo tela, Ucheb. dlya vtuzov, v. 2, Prikladnaya mekhanika sploshnykh sred, Izd-vo MGTU im. N. E. Baumana, M., 1999

[3] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[4] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[5] Khludnev A. M., “Teoriya treschin s vozmozhnym kontaktom beregov”, Uspekhi mekhaniki, 3:4 (2005), 41–82

[6] Rudoi E. M., “Differentsirovanie funktsionalov energii v trekhmernoi teorii uprugosti dlya tel, soderzhaschikh poverkhnostnye treschiny”, Sib. zhurn. industr. matematiki, 8:1(21) (2005), 106–116 | MR

[7] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Izv. RAN. Mekhanika tverdogo tela, 2007, no. 6, 113–127

[8] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, Prikl. matematika i mekhanika, 67:1 (2003), 99–110 | MR | Zbl

[9] Khludnev A. M., Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine, Preprint No 1–09, In-t gidrodinamiki SO RAN, Novosibirsk, 2009, 18 pp.

[10] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4(40) (2009), 92–105 | MR | Zbl

[11] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[12] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh tonkie zhestkie vklyucheniya”, Dokl. AN, 43:1 (2010), 47–50 | MR

[13] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Europ. J. Mech. A/Solids, 29:3 (2010), 392–399 | DOI | MR

[14] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010