On a~boundary value problem for a~nonlinear heat equation in the case of two space variables
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with a boundary value problem with degeneration for a nonlinear heat equation in the case of two space variables. Solving this problem makes it possible to study heat conduction in a neighborhood of a closed cylindrical surface. The theorem is proved of the existence and uniqueness of an analytic solution to the problem.
Keywords: nonlinear heat equation, boundary value problem, analytic solution.
@article{SJIM_2014_17_1_a5,
     author = {A. L. Kazakov and P. A. Kuznetsov},
     title = {On a~boundary value problem for a~nonlinear heat equation in the case of two space variables},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a5/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
TI  - On a~boundary value problem for a~nonlinear heat equation in the case of two space variables
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 46
EP  - 54
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a5/
LA  - ru
ID  - SJIM_2014_17_1_a5
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%T On a~boundary value problem for a~nonlinear heat equation in the case of two space variables
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 46-54
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a5/
%G ru
%F SJIM_2014_17_1_a5
A. L. Kazakov; P. A. Kuznetsov. On a~boundary value problem for a~nonlinear heat equation in the case of two space variables. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a5/

[1] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl

[2] Barenblatt G. I. [i dr.], Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972

[3] Shagapov V. Sh., Galiaskarova G. R., “K teorii nakopleniya smoga v shtil”, Izv. AN. Ser. Fizika atmosfery i okeana, 38:1 (2002), 71–80

[4] Martinson L. K., Malov Yu. I., Differentsialnye uravneniya matematicheskoi fiziki, Izd-vo MGTU im. N. E. Baumana, M., 2002

[5] Sidorov A. F., Izbrannye trudy. Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[6] Sidorov A. F., “O nekotorykh analiticheskikh predstavleniyakh reshenii nelineinogo uravneniya nestatsionarnoi filtratsii”, Chislennye metody resheniya zadach filtratsii mnogofaznoi neszhimaemoi zhidkosti, Novosibirsk, 1987, 247–257

[7] Bautin S. P., “Suschestvovanie analiticheskoi teplovoi volny, opredelyaemoi zadannym kraevym rezhimom”, Sib. zhurn. industr. matematiki, 6:1 (2003), 3–11 | MR | Zbl

[8] Kazakov A. L., Lempert A. A., “O suschestvovanii i edinstvennosti resheniya kraevoi zadachi dlya parabolicheskogo uravneniya nestatsionarnoi filtratsii”, Prikl. mekhanika i tekhn. fizika, 54:2 (2013), 97–105 | MR

[9] Kazakov A. L., Spevak L. F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Modelling, 37:10–11 (2013), 6918–6928 | DOI | MR