On the uniqueness of a~cycle in an asymmetric $3$-dimensional model of a~molecular repressilator
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the uniqueness of cycles in some nonlinear dynamical systems considered as models for the functioning of a molecular repressilator. A constructive method for the determination of the invariant surface containing this cycle is described as well.
Keywords: nonlinear dynamical system, molecular repressilator, cycle
Mots-clés : phase portrait, invariant domain, projective transformation.
@article{SJIM_2014_17_1_a0,
     author = {N. B. Ayupova and V. P. Golubyatnikov},
     title = {On the uniqueness of a~cycle in an asymmetric $3$-dimensional model of a~molecular repressilator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a0/}
}
TY  - JOUR
AU  - N. B. Ayupova
AU  - V. P. Golubyatnikov
TI  - On the uniqueness of a~cycle in an asymmetric $3$-dimensional model of a~molecular repressilator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 3
EP  - 7
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a0/
LA  - ru
ID  - SJIM_2014_17_1_a0
ER  - 
%0 Journal Article
%A N. B. Ayupova
%A V. P. Golubyatnikov
%T On the uniqueness of a~cycle in an asymmetric $3$-dimensional model of a~molecular repressilator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 3-7
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a0/
%G ru
%F SJIM_2014_17_1_a0
N. B. Ayupova; V. P. Golubyatnikov. On the uniqueness of a~cycle in an asymmetric $3$-dimensional model of a~molecular repressilator. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a0/

[1] Akinshin A. A., Golubyatnikov V. P., Golubyatnikov I. V., “O nekotorykh mnogomernykh modelyakh funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 16:1 (2013), 3–9

[2] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Fadeev S. I., “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008, 395–480

[3] Murrey J. D., Mathematical Biology, v. I, An Introduction, Springer-Verl., N.Y., 2002 | MR

[4] Volokitin E. P., “O predelnykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. zhurn. industr. matematiki, 17:3 (2004), 57–65 | MR | Zbl

[5] Golubyatnikov V. P., Likhoshvai V. A., Ratushny A. V., “Existence of closed trajectories in 3-D gene networks”, J. 3-dimensional Images, 18:4 (2004), 96–101

[6] Gaidov Yu. A., Golubyatnikov V. P., “On the existence and stability of cycles in gene networks with variable feedbacks”, Contemporary Math., 553 (2011), 61–74 | DOI | MR | Zbl

[7] Gaidov Yu. A., Golubyatnikov V. P., “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyuschikh nesimmetrichnye gennye seti”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 7:2 (2007), 19–27

[8] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR