Numerical simulation of alloy solidification under intensive conjugate heat transfer
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 111-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of determining the rate of cooling of a metal during solidification at the intersection with the liquidus temperature under an intense heat removal from the surface. Solving this problem is necessary for determining the process conditions, the boundary and initial conditions for which it is possible to get new alloys with microcrystalline structures. We give the necessary finite-difference equations, describe the algorithm, and, using the known experimental data, test the obtained model. We investigate the influence of the size of the casting and the heat transfer coefficient on the cooling rate of an aluminum-based alloy at the liquidus temperature.
Mots-clés : solidification simulation, heat transfer coefficient
Keywords: finite-difference method, cooling rate, microcrystalline structure.
@article{SJIM_2013_16_4_a9,
     author = {V. V. Marshirov and L. E. Marshirova},
     title = {Numerical simulation of alloy solidification under intensive conjugate heat transfer},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a9/}
}
TY  - JOUR
AU  - V. V. Marshirov
AU  - L. E. Marshirova
TI  - Numerical simulation of alloy solidification under intensive conjugate heat transfer
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 111
EP  - 120
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a9/
LA  - ru
ID  - SJIM_2013_16_4_a9
ER  - 
%0 Journal Article
%A V. V. Marshirov
%A L. E. Marshirova
%T Numerical simulation of alloy solidification under intensive conjugate heat transfer
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 111-120
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a9/
%G ru
%F SJIM_2013_16_4_a9
V. V. Marshirov; L. E. Marshirova. Numerical simulation of alloy solidification under intensive conjugate heat transfer. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 111-120. http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a9/

[1] Teng H., Li T., Zhang X., Zhang Z., “Influence of sub-rapid solidification on microstructure and mechanical properties of AZ61A magnesium alloy”, Trans. Nonferrous Metals Soc. China, 18:1 (2008), 86–90 | DOI

[2] Zeer G. M., Pervukhin M. V., Zelenkova E. G., “Effect of cooling rate on microstructure formation during crystallization of aluminum alloy 1417M”, Metal Sci. Heat Treatment, 53:5–6 (2011), 210–212 | DOI

[3] Marshirov V. V., Sposob litya pod davleniem i ustroistvo dlya ego osuschestvleniya, Patent RF No 2055686 MPK B22D17/00, 1996

[4] Balandin G. F., Osnovy teorii formirovaniya otlivki, Mashinostroenie, M., 1976

[5] Telegin A. S., Shvydskii V. S., Yaroshenko Yu. G., Termodinamika i teploperenos, Metallurgiya, M., 1980

[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[7] Samoilovich Yu. A., Kabakov Z. A., “Raschet zatverdevaniya slitka iz dvoinogo splava na osnove ‘skhemy kompensatsii’ ”, Izv. AN SSSR. Ser. Metally, 1979, no. 4, 65–67

[8] Kabanov P. G., “Matematicheskoe modelirovanie protsessa kristallizatsii zhidkogo metalla v usloviyakh vneshnego vozdeistviya”, Sib. zhurn. industr. matematiki, 10:4(32) (2007), 55–60 | MR | Zbl

[9] Hamasaiid A., Dour G., Dargusch M. S., Loulou T., Davidson C., Savage G., “Heat-transfer coefficient and in-cavity pressure at the casting-die interface during high-pressure die casting of the magnesium alloy AZ91D”, Metallurgical and Materials Trans. A, 39:4 (2008), 853–864 | DOI

[10] Marshirov V. V., Timofeev G. I., Trifonov Yu. I., “Vliyanie izbytochnogo davleniya na teploobmen rasplava s metallicheskoi formoi”, Liteinoe proizvodstvo, 1987, no. 10, 21–22

[11] Zhang L., Li L., “Determination of heat transfer coefficients at metal/chill interface in the casting solidification process”, Heat and Mass Transfer, 48:8 (2013), 1071–1080 | DOI

[12] Zhang X., Atrens A., “Estimation of the unknown parameters in the melt-spinning process”, J. Materials Sci., 16 (1985), 1951–1959

[13] Broderick T. F., Jackson A. G., Jones H., Froes F. H., “The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V”, Metallurgical Trans. A, 50 (2005), 929–931

[14] Tkatch V. I., Grishin A. M., Maksimov V. V., “Estimation of the heat transfer coefficient in melt spinning process”, 13 Internat. Conf. on Rapidly Quenched and MetastableMaterials, J. Phys. Conf. Ser., 144:1 (2009), 012104 | DOI