On the functioning of a~VHF microelectromechanical resonator
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 75-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a new design of a microelectromechanical resonator with micrometer dimensions operating at gigahertz frequencies, previously proposed by the authors. The article contains a description of technological problems of the realization of a microelectromechanical resonator as well as a rigorous justification of its functioning in a mathematical model. In analytical form, we establish a connection between auto-oscillations of the mobile element of the microresonator generated by electrostatic attraction during startup, and the parameters of the natural oscillations which turn into auto-oscillations at the end of the startup.
Keywords: VHF MEMS, microresonator, frequency generator, electrostatic attraction, rigidity of a spring.
Mots-clés : auto-oscillation, phase portrait
@article{SJIM_2013_16_4_a6,
     author = {E. G. Kostsov and S. I. Fadeev},
     title = {On the functioning of {a~VHF} microelectromechanical resonator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {75--86},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a6/}
}
TY  - JOUR
AU  - E. G. Kostsov
AU  - S. I. Fadeev
TI  - On the functioning of a~VHF microelectromechanical resonator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 75
EP  - 86
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a6/
LA  - ru
ID  - SJIM_2013_16_4_a6
ER  - 
%0 Journal Article
%A E. G. Kostsov
%A S. I. Fadeev
%T On the functioning of a~VHF microelectromechanical resonator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 75-86
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a6/
%G ru
%F SJIM_2013_16_4_a6
E. G. Kostsov; S. I. Fadeev. On the functioning of a~VHF microelectromechanical resonator. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 75-86. http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a6/

[1] Kostsov E. G., Fadeev S. I., “Novye elektromekhanicheskie rezonatory dlya gigogertsevykh chastot”, Avtometriya, 10:2 (2013), 115–122

[2] Kostsov E. G., “Sostoyanie i perspektivy mikro- i nanoelektromekhanik”, Avtometriya, 45:3 (2009), 3–52 | MR

[3] Grinberg Ya. S., Pashkin Yu. A., Ilichev E. V., “Nanomekhanicheskie rezonatory”, UFN, 182:4 (2012), 407–436 | DOI

[4] Cimalla V., Niebelschütz F., Tonisch K., Foerstera Ch., Brueckner K., Cimalla I., Friedrich T., Pezoldt J., Stephan R., Hein M., Ambachera O., “Nanoelectromechanical devices for sensing applications”, Sensors and Actuators, 126 (2007), 24–34 | DOI

[5] Caglianil A., Davis Z. J., “Ultrasensitive bulk disk microresonator-based sensor for distributed mass sensing”, J. Micromech. Microengrg., 21 (2011), 045016 | DOI

[6] Tappura K., Pekko P., Sepp H., “High-Q micromechanical resonators for mass sensing in dissipative media”, J. Micromech. Microengrg., 21 (2011), 065002 | DOI

[7] Kostsov E. G., “Nanoelektromekhanicheskie sistemy”, Mezhdunarodnaya entsiklopediya YuNESKO “Nanonauka i nanotekhnologii”, Magistr-press, M., 2009, 662–676

[8] Miao Lu, Xuekun Lu, Min-Woo Jang, Stephen A. Campbell, Tianhong Cui, “Characterization of carbon nanotube nanoswitches with gigahertz resonance frequency and low pull-in voltages using electrostatic force microscopy”, J. Micromech. Microengrg., 20 (2010), 105016 | DOI

[9] Kostsov E. G., “Ferroelectric-based electrostatic micromotors with nanometer gaps”, IEEE Transaction on Ultrasonics, Ferroelectric and Frequency Control, 53:12, Special Issue on Nanoscale Ferroelectric (2006), 2294–2299 | DOI

[10] Baginsky I. L., Kostsov E. G., “High energy output MEMS based on thin layers of ferroelectric materials”, Ferroelectrics, 351 (2007), 69–78 | DOI

[11] Hikaru Takamatsu, Toshihiko Sugiura, “Nonlinear vibration of electrostatic MEMS under DC and AC applied voltage”, Proc. Internat. Conf. MEMS, NANO and Smart Systems (ICMENS'05), Florida, 2005, 423–424

[12] Wen-Chien Chen, Weileun Fang, Sheng-Shian Lil, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits”, J. Micromech. Microengrg., 21 (2011), 065012 | DOI

[13] Colinet E., Juillard J., Guessab S., Kielbasa R., “Actuation of resonant MEMS using short pulsed forces”, Sensor and Actuators. A, 15 (2004), 118–125 | DOI

[14] Erik Cjlinet, van Beek J. T. M., van der Avoort C., van der Hout R., Bontemps J. J. M., Steeneken P. G., “Amplitude saturation of MEMS resonators explained by autoparametric resonance”, J. Micromech. Microengrg., 20 (2010), 105012 | DOI

[15] Ming-Chang M. Lee, Ming C. Wu., “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators”, Optics Express, 14:11 (2006), 4703–4712 | DOI

[16] Mendels D. A., Lowe M., Cuenat A., Cain M. G., Vallejo E., Ellis D., Mendels F., “Dynamic properties of AFM cantilevers and the calibration of their spring constants”, J. Micromech. Microengrg., 16 (2006), 1720–1733 | DOI

[17] Gridchin V. A., Dragunov V. P., Fizika mikrosistem, Ch. 1, Izd-vo NGTU, Novosibirsk, 2004

[18] Fadeev S. I., Pimanov D. O., “Chislennoe issledovanie matematicheskikh modelei mikromekhaniki pri periodicheskom impulsnom vozdeistvii”, Sib. zhurn. industr. matematiki, 16:3(55) (2013), 133–145

[19] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959