Existence of an optimal shape for thin rigid inclusions in the Kirchhoff--Love plate
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 142-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with an optimal control problem for the elliptic system of equations describing an equilibrium of a Kirchhoff–Love plate with delaminated thin rigid inclusion. It is required to minimize the mean square integral deviation of the bending moment from the function given on the exterior boundary. The inclusion shape is considered as the control function. The solvability of the problem is established.
Keywords: Kirchhoff–Love plate model, thin rigid inclusion, crack, nonlinear boundary conditions, optimal control.
@article{SJIM_2013_16_4_a12,
     author = {V. V. Shcherbakov},
     title = {Existence of an optimal shape for thin rigid inclusions in the {Kirchhoff--Love} plate},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {142--151},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a12/}
}
TY  - JOUR
AU  - V. V. Shcherbakov
TI  - Existence of an optimal shape for thin rigid inclusions in the Kirchhoff--Love plate
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 142
EP  - 151
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a12/
LA  - ru
ID  - SJIM_2013_16_4_a12
ER  - 
%0 Journal Article
%A V. V. Shcherbakov
%T Existence of an optimal shape for thin rigid inclusions in the Kirchhoff--Love plate
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 142-151
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a12/
%G ru
%F SJIM_2013_16_4_a12
V. V. Shcherbakov. Existence of an optimal shape for thin rigid inclusions in the Kirchhoff--Love plate. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 142-151. http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a12/

[1] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[2] Khludnev A. M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[3] Khludnev A. M., Negri M., “Optimal rigid inclusion shapes in elastic bodies with cracks”, ZAMP, 64:1 (2013), 179–191 | DOI | MR | Zbl

[4] Scherbakov V. V., “Ob odnoi zadache upravleniya formoi tonkikh vklyuchenii v uprugikh telakh”, Sib. zhurnal industr. matematiki, 16:1(53) (2013), 138–147

[5] Scherbakov V. V., “Upravlenie zhestkostyu tonkikh vklyuchenii v uprugikh telakh s krivolineinymi treschinami”, Vestn. NGU. Matematika, mekhanika, informatika, 13:1 (2013), 135–149

[6] Rudoi E. M., “Invariantnye integraly v ploskoi zadache teorii uprugosti dlya tel s zhestkimi vklyucheniyami i treschinami”, Sib. zhurnal industr. matematiki, 15:1(49) (2012), 99–109 | MR

[7] Kovtunenko V. A., “Variatsionnaya i kraevaya zadachi s treniem na vnutrennei granitse”, Sib. mat. zhurn., 39:5 (1998), 1060–1073 | MR | Zbl

[8] Kovtunenko V. A., “Reshenie zadachi ob optimalnom razreze v uprugoi balke”, Prikl. mekhanika i tekhn. fizika, 40:5 (1999), 149–157 | MR | Zbl

[9] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A/Solids, 32:1 (2012), 69–75 | DOI | MR

[10] Lazarev N. P., “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Siberian Federal Univ. Mathematics Physics, 6:1 (2013), 53–62

[11] Lazarev N. P., “Formula Griffitsa dlya plastiny Timoshenko s krivolineinoi treschinoi”, Sib. zhurn. industr. matematiki, 16:2(54) (2013), 98–108

[12] Berezhnitskii L. T., Panasyuk V. V., Staschuk N. G., Vzaimodeistvie zhestkikh lineinykh vklyuchenii i treschin v deformiruemom tele, Nauk. dumka, Kiev, 1983

[13] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[14] Browder F., “On the regularity properties of solutions of elliptic differential equations”, Comm. Pure Appl. Math., 19:3 (1956), 351–361 | DOI | MR

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl