Random walks with missing summands
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a new model of the behavior of the cost of a risky asset in which a random walk with missing summands is used, formulas for the computation of the process of fair prices for a financial commitment in the stationary and nonstationary cases are deduced.
Keywords: random walk, martingale measure, Fourier integral
Mots-clés : Esscher transform.
@article{SJIM_2013_16_4_a1,
     author = {G. I. Belyavskii and N. V. Danilova and N. D. Nikonenko},
     title = {Random walks with missing summands},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a1/}
}
TY  - JOUR
AU  - G. I. Belyavskii
AU  - N. V. Danilova
AU  - N. D. Nikonenko
TI  - Random walks with missing summands
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 21
EP  - 28
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a1/
LA  - ru
ID  - SJIM_2013_16_4_a1
ER  - 
%0 Journal Article
%A G. I. Belyavskii
%A N. V. Danilova
%A N. D. Nikonenko
%T Random walks with missing summands
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 21-28
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a1/
%G ru
%F SJIM_2013_16_4_a1
G. I. Belyavskii; N. V. Danilova; N. D. Nikonenko. Random walks with missing summands. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 21-28. http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a1/

[1] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, FAZIS, M., 1998

[2] Danilova N. V., Nikonenko N. D., “Razlichnye vidy khedzhirovaniya dlya odnoi modeli nepolnogo rynka”, Trudy Mezhdunar. NPK “Infokom-2008”, 107–110

[3] Nikonenko N. D., “Khedzhirovanie dinamicheskikh finansovykh obyazatelstv dlya klassa modelei nepolnogo rynka”, Obozrenie prikladnoi i promyshlennoi matematiki, 15:5 (2008), 913–914

[4] Kallenberg O., Foundations of Modern Probability, Springer-Verl., N.Y., 1997 | MR | Zbl

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1967 | Zbl

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967 | Zbl

[7] Diaconis P., Freedman D., “Iterated random functions”, SIAM Rew., 41:1 (1999), 45–76 | DOI | MR | Zbl

[8] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, FAZIS, M., 1998

[9] Rusakov O. V., “Summy nezavisimykh puassonovskikh subordinatorov i ikh svyaz so strogo $\alpha$-ustoichivymi protsessami tipa Ornshteina–Ulenbeka”, Zapiski nauchnykh seminarov POMI, 361, 2008, 123–137 | Zbl

[10] Cont R., Tankov P., Financial modeling with jump processes, Chapman Hall/CRC, London, 2004 | MR

[11] Lukacs E., Characteristic function, Griffins statistical monograph courses, London, 1960 | MR

[12] Amin K., “Jump-diffusion option valuation in discrete time”, J. Finance, 48 (1993), 1833–1863 | DOI

[13] Belyavskii G. I., Nikonenko N. D., “Algoritm rascheta bezarbitrazhnoi tseny finansovogo obyazatelstva na osnove diskretizatsii protsessov Levi po sostoyaniyu”, Nauchno-tekhn. vedomosti Sankt-Peterburgskogo gos. politekhnicheskogo un-ta. Informatika. Telekommunikatsii. Upravlenie, 2012, no. 3, 56–59