Algorithms of compact location for technological equipment on parallel lines
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional location problem of rectangles on parallel lines is considered. For constructing a set of Pareto-optimal solutions, integer optimization and dynamic programming are applied. A computational experiment for the comparison of the approaches is carried out.
Keywords: integer programming, dynamic programming, location problem.
Mots-clés : Pareto-optimal solutions
@article{SJIM_2013_16_3_a6,
     author = {G. G. Zabudskii and I. V. Amzin},
     title = {Algorithms of compact location for technological equipment on parallel lines},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a6/}
}
TY  - JOUR
AU  - G. G. Zabudskii
AU  - I. V. Amzin
TI  - Algorithms of compact location for technological equipment on parallel lines
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 86
EP  - 94
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a6/
LA  - ru
ID  - SJIM_2013_16_3_a6
ER  - 
%0 Journal Article
%A G. G. Zabudskii
%A I. V. Amzin
%T Algorithms of compact location for technological equipment on parallel lines
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 86-94
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a6/
%G ru
%F SJIM_2013_16_3_a6
G. G. Zabudskii; I. V. Amzin. Algorithms of compact location for technological equipment on parallel lines. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 86-94. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a6/

[1] Zabudskii G. G., Amzin I. V., “Kompaktnoe razmeschenie pryamougolnykh ob'ektov na parallelnykh liniyakh”, Diskretnyi analiz i issledovanie operatsii, Materialy konf., Izd-vo In-ta matematiki, Novosibirsk, 2010, 114

[2] Zabudskii G. G., Legkikh S. A., “Matematicheskaya model optimizatsii razmescheniya gibkikh modulei tekhnologicheskogo oborudovaniya”, Prikl. matematika i inform. tekhnologii, Sb. nauch. i metod. trudov, izd. OmGTU, Omsk, 2005, 20–28

[3] Legkikh S. A., Nagornaya Z. E., Zabudskii G. G., “Avtomatizatsiya proektirovaniya planov proizvodstvennykh uchastkov i tsekhov shveinykh predpriyatii”, Estestvennye i tekhn. nauki, 2005, no. 4, 261–266

[4] Gimadi E. Kh., Zalyubovskii V. V., “Zadacha upakovki v konteinery: asimptoticheski tochnyi podkhod”, Izvestiya vuzov. Matematika, 1997, no. 12, 25–33 | MR | Zbl

[5] Kochetov Yu. A., Rudnev A. S., “Algoritm imitatsii otzhiga dlya zadach pryamougolnoi upakovki”, Diskretnyi analiz i issledovanie operatsii, Materialy konf., Izd-vo In-ta matematiki, Novosibirsk, 2004, 187

[6] Mukhacheva E. A., Valeeva A. F., Kartak V. M., Mukhacheva A. S., Modeli i metody resheniya zadach ortogonalnogo raskroya i upakovki: analiticheskii obzor i novaya tekhnologiya blochnykh struktur, Informatsionnye tekhnologii. Prilozhenie, 5, 2004

[7] Stoyan Yu. G., Yakovlev S. V., Matematicheskie modeli i optimizatsionnye metody geometricheskogo proektirovaniya, Nauk. dumka, Kiev, 1986 | MR

[8] Belov G., Scheithauer G., “A branch-and-cut-and-price algoritm for one-dimensional stock cutting and two-dimensional two-stage cutting”, Europ. J. Operation Research, 171 (2006), 85–106 | DOI | MR | Zbl