Solvability of the second boundary value problem for one elliptic equation in a half-space
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the second boundary value problem in a half-space for a biharmonic equation with a lower-order term. We prove theorems on the solvability of the problem in a Sobolev space.
Mots-clés : elliptic equation
Keywords: boundary value problem, Sobolev space, solvability condition.
@article{SJIM_2013_16_3_a3,
     author = {L. N. Bondar'},
     title = {Solvability of the second boundary value problem for one elliptic equation in a half-space},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a3/}
}
TY  - JOUR
AU  - L. N. Bondar'
TI  - Solvability of the second boundary value problem for one elliptic equation in a half-space
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 41
EP  - 52
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a3/
LA  - ru
ID  - SJIM_2013_16_3_a3
ER  - 
%0 Journal Article
%A L. N. Bondar'
%T Solvability of the second boundary value problem for one elliptic equation in a half-space
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 41-52
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a3/
%G ru
%F SJIM_2013_16_3_a3
L. N. Bondar'. Solvability of the second boundary value problem for one elliptic equation in a half-space. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 41-52. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a3/

[1] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984

[2] Demidenko G. V., “O korrektnoi razreshimosti kraevykh zadach v poluprostranstve dlya kvaziellipticheskikh uravnenii”, Sib. mat. zhurn., 29:4 (1988), 54–67 | MR | Zbl

[3] Demidenko G. V., “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami, II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl

[4] Nirenberg L., Walker H. F., “The null spaces of elliptic partial differential operators in $R^n$”, J. Math. Anal. Appl., 42:2 (1973), 271–301 | DOI | MR | Zbl

[5] Bagirov L. A., Kondratev V. A., “Ob ellipticheskikh uravneniyakh v $R^n$”, Differents. uravneniya, 11:3 (1975), 498–504 | MR | Zbl

[6] Bagirov L. A., Kondratev V. A., “Ob odnom klasse ellipticheskikhuravnenii v $R^n$”, Differents. uravneniya s chastnymi proizvodnymi, Tr. seminara akad. S. L. Soboleva, 2, 1978, 5–16 | MR | Zbl

[7] Bondar L. N., “O razreshimosti kraevoi zadachi dlya odnogo ellipticheskogo uravneniya s mladshimi chlenami”, Analiticheskie i chislennye metody modelirovaniya estestvennonauchnykh i sotsialnykh problem, Sbornik statei 6 Mezhdunarod. nauchno-tekhn. konf., Privolzhskii Dom znanii, Penza, 2011, 27–29

[8] Bondar L. N., “O razreshimosti odnogo ellipticheskogo uravneniya v poluprostranstve”, Sib. elektron. mat. izvestiya, 9 (2012), 618–638 | MR

[9] Karachik V. V., Antropova N. A., “O polinomialnykh resheniyakh zadachi Dirikhle dlya bigarmonicheskogo uravneniya v share”, Sib. zhurn. industr. matematiki, 15:2 (2012), 86–98 | MR

[10] Koshanov B. D., “Neobkhodimye i dostatochnye usloviya razreshimosti kraevykh zadach dlya neodnorodnogo poligarmonicheskogo uravneniya v share”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo in-ta matematiki, Novosibirsk, 2012, 139–158

[11] Uspenskii S. V., “O predstavlenii funktsii, opredelyaemykh odnim klassom gipoellipticheskikh operatorov”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 117, 1972, 292–299 | MR

[12] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998 | MR | Zbl

[13] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 105, 1969, 89–167 | MR | Zbl