On an inverse problem for a Burgers-type equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 28-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of the identification of the source function in a Burgers-type equation. The problem is studied in the case of Cauchy data and mixed boundary conditions in a rectangular domain. Sufficient conditions on the input data for the unique solvability of these problems in classes of smooth bounded functions are found.
Keywords: inverse problem, Burgers equation, boundary-value problem, approximation.
@article{SJIM_2013_16_3_a2,
     author = {Yu. Ya. Belov and K. V. Korshun},
     title = {On an inverse problem for a {Burgers-type} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a2/}
}
TY  - JOUR
AU  - Yu. Ya. Belov
AU  - K. V. Korshun
TI  - On an inverse problem for a Burgers-type equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 28
EP  - 40
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a2/
LA  - ru
ID  - SJIM_2013_16_3_a2
ER  - 
%0 Journal Article
%A Yu. Ya. Belov
%A K. V. Korshun
%T On an inverse problem for a Burgers-type equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 28-40
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a2/
%G ru
%F SJIM_2013_16_3_a2
Yu. Ya. Belov; K. V. Korshun. On an inverse problem for a Burgers-type equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 28-40. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a2/

[1] Burgers I. M., “A mathematical model illustrating the theory of turbulence”, Adv. Mech., 1 (1948), 171–199 | DOI | MR

[2] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[3] Cole I. D., “On a quasilinear parabolic equation occuring in aerodynamics”, Quart. Appl. Math., 9 (1951), 226–236

[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[5] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002 | MR | Zbl

[6] Belov Yu. Ya., Korshun K. V., “O zadache identifikatsii funktsii istochnika dlya uravneniya tipa Byurgersa”, Zhurn. SFU. Ser. Matematika i fizika, 5:4 (2012), 497–506

[7] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[8] Belov Yu. Ya., Kantor S. A., Metod slaboi approksimatsii, izd. KrasGU, Krasnoyarsk, 1999

[9] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi mat. nauk, 17:3 (1962), 3–146 | MR

[10] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966 | Zbl

[11] Belov Yu. Ya., “On estimates of solutions of the split problems for some multi-dimensional partial differential equations”, J. Sib. Federal Univ. Mathematics and Physics, 2:3 (2009), 258–270

[12] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[13] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[14] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001

[15] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR