Estimates for solutions to one class of nonlinear delay differential equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 122-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of nonlinear delay differential equations with periodic coefficients in the linear terms. Sufficient conditions for the asymptotic stability of the zero solution are established. We obtain estimates characterizing the decay of solutions at infinity and describe the attraction sets for the zero solution.
Keywords: delay differential equations, periodic coefficients, asymptotic stability, Lyapunov–Krasovskii functional, estimates for solutions, attraction set.
@article{SJIM_2013_16_3_a10,
     author = {I. I. Matveeva},
     title = {Estimates for solutions to one class of nonlinear delay differential equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/}
}
TY  - JOUR
AU  - I. I. Matveeva
TI  - Estimates for solutions to one class of nonlinear delay differential equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 122
EP  - 132
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/
LA  - ru
ID  - SJIM_2013_16_3_a10
ER  - 
%0 Journal Article
%A I. I. Matveeva
%T Estimates for solutions to one class of nonlinear delay differential equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 122-132
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/
%G ru
%F SJIM_2013_16_3_a10
I. I. Matveeva. Estimates for solutions to one class of nonlinear delay differential equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 122-132. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/