Estimates for solutions to one class of nonlinear delay differential equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 122-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of nonlinear delay differential equations with periodic coefficients in the linear terms. Sufficient conditions for the asymptotic stability of the zero solution are established. We obtain estimates characterizing the decay of solutions at infinity and describe the attraction sets for the zero solution.
Keywords: delay differential equations, periodic coefficients, asymptotic stability, Lyapunov–Krasovskii functional, estimates for solutions, attraction set.
@article{SJIM_2013_16_3_a10,
     author = {I. I. Matveeva},
     title = {Estimates for solutions to one class of nonlinear delay differential equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/}
}
TY  - JOUR
AU  - I. I. Matveeva
TI  - Estimates for solutions to one class of nonlinear delay differential equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 122
EP  - 132
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/
LA  - ru
ID  - SJIM_2013_16_3_a10
ER  - 
%0 Journal Article
%A I. I. Matveeva
%T Estimates for solutions to one class of nonlinear delay differential equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 122-132
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/
%G ru
%F SJIM_2013_16_3_a10
I. I. Matveeva. Estimates for solutions to one class of nonlinear delay differential equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 122-132. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a10/

[1] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 20–28 | MR | Zbl

[2] Demidenko G. V., Matveeva I. I., “Asymptotic properties of solutions of differential-difference equations with periodic coefficients in linear terms”, Proc. 5 Internat.Conf. on Bioinformatics of Genome Regulation and Structure (Novosibirsk, Russia, July 16–22, 2006), v. 3, Institute of Cytology and Genetics, Novosibirsk, 2006, 43–46 | MR

[3] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR | Zbl

[4] Demidenko G. V., “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl

[5] Matveeva I. I., Finogenko I. A., Lashina E. A., “On asymptotic stability of solutions to almost linear delay differential equations with periodic coefficients in linear terms”, J. Comput. Math. Optim., 6:1 (2010), 13–21 | MR | Zbl

[6] Matveeva I. I., Scheglova A. A., “Otsenki reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom s parametrami”, Sib. zhurn. industr. matematiki, 14:1(45) (2011), 83–92 | Zbl

[7] Matveeva I. I., “Ob asimptoticheskoi ustoichivosti reshenii odnogo klassa kvazilineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Teoriya operatorov. Kompleksnyi analiz i matematicheskoe modelirovanie, Tr. Mezhdunar. nauch. konf. (Volgodonsk, 4–8 iyulya 2011), Itogi nauki. Yug Rossii. Ser. Matematicheskii forum, 5, izd. YuMI VNTs RAN i RSO-A, Vladikavkaz, 2011, 231–234 | MR

[8] Demidenko G. V., Vodopyanov E. S., Skvortsova M. A., “Otsenki reshenii lineinykh differentsialnykh uravnenii neitralnogo tipa s neskolkimi otkloneniyami argumenta”, Sib. zhurn. industr. matematiki, 16:3(55) (2013), 53–60 | MR

[9] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[10] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[11] Korenevskii D. G., Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Nauk. dumka, Kiev, 1989 | MR

[12] Kolmanovskii V. B., Myshkis A. D., Introduction to the theory and applications of functional-differential equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[13] Kharitonov V. L., Hinrichsen D., “Exponential estimates for time delay systems”, Systems Control Lett., 53:5 (2004), 395–405 | DOI | MR | Zbl

[14] Mondié S., Kharitonov V. L., “Exponential estimates for retarded time-delay systems: an LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR

[15] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Differents. uravneniya, 41:8 (2005), 1137–1140 | MR | Zbl

[16] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 42:2 (2001), 332–348 | MR | Zbl

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR