Andronov--Hopf bifurcation for some nonlinear delay equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the occurrence of Andronov–Hopf bifurcation cycles in a neighborhood of stationary points of nonlinear delay equations: we formulate conditions for the existence of a bifurcation, find the bifurcation values, and analyze the stability of the bifurcation cycles.
Mots-clés : Andronov–Hopf bifurcation, stable cycles
Keywords: stationary point, delayed argument, first Lyapunov coefficient.
@article{SJIM_2013_16_3_a0,
     author = {A. A. Akin'shin},
     title = {Andronov--Hopf bifurcation for some nonlinear delay equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/}
}
TY  - JOUR
AU  - A. A. Akin'shin
TI  - Andronov--Hopf bifurcation for some nonlinear delay equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 3
EP  - 15
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/
LA  - ru
ID  - SJIM_2013_16_3_a0
ER  - 
%0 Journal Article
%A A. A. Akin'shin
%T Andronov--Hopf bifurcation for some nonlinear delay equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 3-15
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/
%G ru
%F SJIM_2013_16_3_a0
A. A. Akin'shin. Andronov--Hopf bifurcation for some nonlinear delay equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/

[1] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[3] Kuznetsov Y. A., Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, N. Y. et al., 1998 | MR | Zbl

[4] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy, 5 (1986), 5–218 | MR

[5] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967 | MR

[6] Gnoenskii L. S., Kamenskii G. A., Elsgolts L. E., Matematicheskie osnovy teorii upravlyaemykh sistem, Nauka, M., 1969 | MR

[7] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[8] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[9] Obrosova N. K., “Bifurkatsiya Andronova–Khopfa dlya differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. Rossiiskogo un-ta Druzhby narodov. Ser. matematicheskaya, 8 (2001), 66–102

[10] Hayes N. D., “Roots of the transcendental equation associated with a certain difference-differential equation”, J. London Math. Soc., 25 (1950), 226–232 | DOI | MR | Zbl

[11] Glass L., Meki M., Ot chasov k khaosu: Ritmy zhizni, Mir, M., 1991 | MR | Zbl

[12] Hale J., Magalhaes L. T., Oliva W., Dynamics in infinite dimensions, Appl. Math. Sci., 47, N. Y. et al., 2002 | MR

[13] Ion A.-V., Georgescu R.-M., “Stability of equilibrium and periodic solutions of a delay equation modeling leukemia”, Works of the Middle Volga Math. Soc., 11:2 (2009), 146–157 | MR

[14] Ion A.-V., Georgescu R.-M., Hopf points of codimension two in a delay differential equation modeling leukemia, Cornell Univ. Library, 2012, 18 pp., arXiv: 1205.3917 [math.DS] | Zbl

[15] Ion A.-V., On the computation of the term $w_{21}z^2\overline{z}$ of the series defining the center manifold for a scalar delay differential equation, Cornell Univ. Library, 2011, 16 pp., arXiv: 1110.4090v2 [math.DS]

[16] Hale J., Verduyn Lunel S. M., Introduction to functional differential equation, Springer-Verlag, Berlin, 2003

[17] Mallet-Paret J., Nussbaum R. D., “Boundary layer phenomena for differential-delay equations with state dependent time lags, I”, Arch. Rational Mech. Anal., 120 (1992), 99–146 | DOI | MR | Zbl

[18] Mallet-Paret J., Nussbaum R. D., “Boundary layer phenomena for differential-delay equations with state dependent time lags, II”, J. Reine Angew. Math., 477 (1996), 129–197 | MR | Zbl

[19] Mallet-Paret J., Nussbaum R. D., “Boundary layer phenomena for differential-delay equations with state-dependent time lags, III”, J. Differential Equations, 189 (2003), 640–692 | DOI | MR | Zbl

[20] Mallet-Paret J., Nussbaum R. D., “Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations”, J. Differential Equations, 250 (2011), 4037–4084 | DOI | MR | Zbl

[21] Garab A., Krisztin T., “The period function of a delay differential equation and an application”, Period. Math. Hungar., 63:2 (2011), 173–190 | DOI | MR | Zbl

[22] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Fadeev S. I., “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008, 395–480

[23] Akinshin A. A., Golubyatnikov V. P., Golubyatnikov I. V., “O nekotorykh mnogomernykh modelyakh funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 16:1(53) (2013), 3–9 | MR

[24] Akinshin A. A., Golubyatnikov V. P., “Tsikly v simmetrichnykh dinamicheskikh sistemakh”, Vestn. NGU, 12:2 (2012), 3–12

[25] Akinshin A. A., Golubyatnikov V. P., “Voprosy edinstvennosti tsiklov u nelineinykh dinamicheskikh sistem spetsialnogo vida”, Dni geometrii v Novosibirske-2011, Trudy Mezhdunarod. konf. (Novosibirsk, 2012), 7–15

[26] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadiinogo sinteza bez vetvleniya”, Sib. zhurn. industr. matematiki, 7:1(17) (2004), 73–94 | MR | Zbl

[27] Mackey M. C., Ou C., Pujo-Menjouet L., Wu J., “Periodic oscillations of blood cell populations in chronic myelogenous leukemia”, SIAM J. Math. Anal., 38:1 (2006), 166–187 | DOI | MR | Zbl

[28] Hutchinson G., “Circular causal systems in ecology”, Ann. New York Acad. Sci., 50 (1948–1950), 221–246 | DOI

[29] Pujo-Menjouet L., Bernard S., Mackey M. C., “Long period oscillations in a G0 model of hematopoietic stem cells”, SIAM J. Appl. Dynam. Syst., 4:2 (2005), 312–332 | DOI | MR | Zbl

[30] Murray J. D., Mathematical Biology, v. 1, Interdisciplinary Applied Mathematics, An Introduction, Springer-Verlag, N.Y. et al., 2002 | MR

[31] Glass L., Mackey M. C., “Pathological physiological conditions resulting from instabilities in physiological control systems”, Ann. New York Acad. Sci., 316, 214–235 | DOI | Zbl

[32] Likhoshvai V. A., Fadeev S. I., Kogai V. V., Khlebodarova T. M., “On the chaos in gene networks”, J. Bioinformatics and Computational Biology, 11:1 (2013), 1340009, 25 pp. | DOI

[33] Chow Shui-Nee, Lin Xiao-Biao, Mallet-Paret J., “Transition layers for singularly perturbed delay differential equations with monotone nonlinearities”, J. Dynam. Differential Equations, 1:1 (1989), 3–43 | DOI | MR | Zbl

[34] Ruan S., “Delay differential equations in single species dynamics”, Delay Differential Equations and Applications, Springer-Verl., Dordrecht, 2006, 477–517 | DOI | MR