Andronov--Hopf bifurcation for some nonlinear delay equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the occurrence of Andronov–Hopf bifurcation cycles in a neighborhood of stationary points of nonlinear delay equations: we formulate conditions for the existence of a bifurcation, find the bifurcation values, and analyze the stability of the bifurcation cycles.
Mots-clés : Andronov–Hopf bifurcation, stable cycles
Keywords: stationary point, delayed argument, first Lyapunov coefficient.
@article{SJIM_2013_16_3_a0,
     author = {A. A. Akin'shin},
     title = {Andronov--Hopf bifurcation for some nonlinear delay equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/}
}
TY  - JOUR
AU  - A. A. Akin'shin
TI  - Andronov--Hopf bifurcation for some nonlinear delay equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 3
EP  - 15
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/
LA  - ru
ID  - SJIM_2013_16_3_a0
ER  - 
%0 Journal Article
%A A. A. Akin'shin
%T Andronov--Hopf bifurcation for some nonlinear delay equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 3-15
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/
%G ru
%F SJIM_2013_16_3_a0
A. A. Akin'shin. Andronov--Hopf bifurcation for some nonlinear delay equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a0/