Estimation of the parameters of a~compactly-supported model stable under the violation of compact supportedness
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 109-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two approaches to the problem of robust estimations of the distribution parameters of a random variable whose range is bounded (from either or both sides). The traditional approach gives stable parameter estimates only when the actual and model random variables have the same range. The generalized approach introduced in the paper can be applied in the presence of observations lying outside the range of the model random variable. It is shown that, under some conditions, these approaches are asymptotically equivalent.
Keywords: compactly-supported model, parameter estimation, robustness, influence function, cosine distribution.
@article{SJIM_2013_16_2_a9,
     author = {D. V. Lisitsin and K. V. Gavrilov},
     title = {Estimation of the parameters of a~compactly-supported model stable under the violation of compact supportedness},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a9/}
}
TY  - JOUR
AU  - D. V. Lisitsin
AU  - K. V. Gavrilov
TI  - Estimation of the parameters of a~compactly-supported model stable under the violation of compact supportedness
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 109
EP  - 121
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a9/
LA  - ru
ID  - SJIM_2013_16_2_a9
ER  - 
%0 Journal Article
%A D. V. Lisitsin
%A K. V. Gavrilov
%T Estimation of the parameters of a~compactly-supported model stable under the violation of compact supportedness
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 109-121
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a9/
%G ru
%F SJIM_2013_16_2_a9
D. V. Lisitsin; K. V. Gavrilov. Estimation of the parameters of a~compactly-supported model stable under the violation of compact supportedness. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 109-121. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a9/

[1] Tsypkin Ya. Z., Osnovy informatsionnoi teorii identifikatsii, Nauka, M., 1984 | MR

[2] Lisitsin D. V., Gavrilov K. V., “Robastnoe otsenivanie finitnoi modeli”, Sb. nauch. tr. NGTU, no. 2(36), 2004, 47–56

[3] Lisitsin D. V., Gavrilov K. V., “Ustoichivoe otsenivanie parametrov modeli pri asimmetrichnom zasorenii dannykh”, Izvestiya MAN VSh, 2006, no. 1(35), 60–73

[4] Shurygin A. M., Prikladnaya stokhastika: robastnost, otsenivanie, prognoz, Finansy i statistika, M., 2000 | MR | Zbl

[5] Khyuber P., Robastnost v statistike, Mir, M., 1984 | MR

[6] Khampel F., Ronchetti E., Rausseu P., Shtael V., Robastnost v statistike: podkhod na osnove funktsii vliyaniya, Mir, M., 1989 | MR

[7] Gubarev V. V., Veroyatnostnye modeli, Spravochnik, V 2-kh ch., izd. NETI, Novosibirsk, 1992

[8] Smolyak S. A., Titarenko B. P., Ustoichivye metody otsenivaniya: statisticheskaya obrabotka neodnorodnykh sovokupnostei, Statistika, M., 1980

[9] Lisitsin D. V., “Ob otsenivanii parametrov modeli pri baiesovskom tochechnom zasorenii”, Dokl. AN VSh RF, 2009, no. 1(12), 41–55

[10] Lisitsin D. V., “Otsenivanie pri baiesovskom tochechnom zasorenii: svyaz s podkhodom Khampelya i minimaksnaya otsenka”, Sb. nauch. tr. NGTU, no. 3(65), 2011, 61–66

[11] Volodin I. N., Lektsii po teorii veroyatnostei i matematicheskoi statistike, Izd-vo Kazan. gos. un-ta, Kazan, 2006