The Griffith formula for a~Timoshenko-type plate with a~curvilinear track
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 98-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equilibrium problem for an elastic transversely isotropic Timoshenko-type plate with a curvilinear crack. Nonpenetration conditions on the faces of the crack having the form of inequalities (conditions of the Signorini type) are given. It is proved that the solutions to the equilibrium problems with a perturbed crack converge to the solution to the equilibrium problem with the unperturbed crack in the corresponding space. The derivative of the energy functional with respect to the crack length is obtained.
Keywords: Timoshenko-type plate, crack, nonpenetration condition, Griffith criterion, variational inequality, derivative of the energy functional, nonsmooth domain.
@article{SJIM_2013_16_2_a8,
     author = {N. P. Lazarev},
     title = {The {Griffith} formula for {a~Timoshenko-type} plate with a~curvilinear track},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a8/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - The Griffith formula for a~Timoshenko-type plate with a~curvilinear track
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 98
EP  - 108
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a8/
LA  - ru
ID  - SJIM_2013_16_2_a8
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T The Griffith formula for a~Timoshenko-type plate with a~curvilinear track
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 98-108
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a8/
%G ru
%F SJIM_2013_16_2_a8
N. P. Lazarev. The Griffith formula for a~Timoshenko-type plate with a~curvilinear track. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a8/