Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2013_16_2_a12, author = {A. M. Khludnev}, title = {On an equilibrium problem for a~two-layer elastic body with a~crack}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {144--153}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a12/} }
TY - JOUR AU - A. M. Khludnev TI - On an equilibrium problem for a~two-layer elastic body with a~crack JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2013 SP - 144 EP - 153 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a12/ LA - ru ID - SJIM_2013_16_2_a12 ER -
A. M. Khludnev. On an equilibrium problem for a~two-layer elastic body with a~crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 144-153. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a12/
[1] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974
[2] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR
[3] Grisvard P., Singularities in Boundary Value Problems, Springer-Verl., Masson, 1992 | MR | Zbl
[4] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[5] Khludnev A. M., “Teoriya treschin s vozmozhnym kontaktom beregov”, Uspekhi mekhaniki, 3:4 (2005), 41–82
[6] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[7] Khludnev A. M., “Ob izgibe uprugoi plastiny s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 14:1 (2011), 114–126 | MR | Zbl
[8] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, Prikl. matematika i mekhanika, 67:1 (2003), 109–123 | MR | Zbl
[9] Rudoi E. M., Khludnev A. M., “Odnostoronnii kontakt plastiny s tonkim uprugim prepyatstviem”, Sib. zhurn. industr. matematiki, 12:2 (2009), 120–130 | MR | Zbl
[10] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[11] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl
[12] Rotanova T. A., “Zadacha ob odnostoronnem kontakte dvukh plastin, odna iz kotorykh soderzhit zhestkoe vklyuchenie”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 11:1 (2011), 87–98 | Zbl
[13] Rudoi E. M., “Formula Griffitsa i integral Cherepanova–Raisa dlya plastiny s zhestkim vklyucheniem i treschinoi”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:2 (2010), 98–117
[14] Rudoi E. M., “Asimptotika funktsionala energii dlya trekhmernogo tela s zhestkim vklyucheniem i treschinoi”, Prikl. mekhanika i tekhn. fizika, 52:2 (2011), 114–127 | MR
[15] Khludnev A. M., Tani A., “Overlapping domain problems in the crack theory with possible contact between crack faces”, Quart. Appl. Math., 66:3 (2008), 423–435 | MR | Zbl
[16] Khludnev A. M., “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl
[17] Gaudiello A., Khludnev A. M., “Crack on the boundary of two overlapping domain”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl