The automodel problem of the dynamic unloading of an elasticplastic half-space
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 122-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a solution to a planar automodel problem of multistep high-speed unloading from the boundary of an elasticplastic half-space with a considerable level of accumulated irreversible deformations. Uniqueness in the totality of the arising unload waves (simple or shock waves) is based on the thermodynamics laws and the evolution conditions for propagating deformation discontinuities.
Keywords: elasticplastic, shock waves, Riemann waves, automodel problems.
@article{SJIM_2013_16_2_a10,
     author = {A. A. Mansybora and M. M. Rusanov},
     title = {The automodel problem of the dynamic unloading of an elasticplastic half-space},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a10/}
}
TY  - JOUR
AU  - A. A. Mansybora
AU  - M. M. Rusanov
TI  - The automodel problem of the dynamic unloading of an elasticplastic half-space
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 122
EP  - 129
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a10/
LA  - ru
ID  - SJIM_2013_16_2_a10
ER  - 
%0 Journal Article
%A A. A. Mansybora
%A M. M. Rusanov
%T The automodel problem of the dynamic unloading of an elasticplastic half-space
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 122-129
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a10/
%G ru
%F SJIM_2013_16_2_a10
A. A. Mansybora; M. M. Rusanov. The automodel problem of the dynamic unloading of an elasticplastic half-space. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 122-129. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a10/

[1] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1977 | MR

[2] Chernyi G. G., Gazovaya dinamika, Nauka, M., 1988

[3] Agapov I. E., Burenin A. A., Rezunov A. V., “O soudarenii dvukh nelineino-uprugikh tel s ploskimi granitsami”, Prikladnye zadachi mekhaniki deformiruemykh sred, Izd-vo DVO AN SSSR, Vladivostok, 1990, 206–215

[4] Burenin A. A., Lapygin V. V., “Ob otrazhenii ploskoi prodolnoi udarnoi volny ot ploskoi zhestkoi granitsy nelineinoi uprugoi sredy”, Prikl. mekhanika i tekhn. fizika, 1985, no. 5, 125–129

[5] Kulikovskii A. G., Sveshnikova E. I., “Avtomodelnaya zadacha o deistvii vnezapnoi nagruzki na granitsu uprugogo poluprostranstva”, Prikl. matematika i mekhanika, 49:2 (1985), 284–291 | MR

[6] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998

[7] Bleikh G. G., Nelson Dzh., “Ploskie volny v uprugoplasticheskom poluprostranstve, vyzvannye sovmestnym deistviem normalnoi i kasatelnoi poverkhnostnykh nagruzok”, Prikl. matematika i mekhanika, 1966, no. 1, 145–156

[8] Kovshov A. N., “O prelomlenii uprugoi volny v uprugoplasticheskoe poluprostranstvo”, Izv. RAN. Mekhanika tverdogo tela, 1972, no. 6, 82–88

[9] Bykovtsev G. I., Kolokolchikov A. V., Sygurov P. N., “Avtomodelnye resheniya uravnenii dinamiki idealnogo uprugoplasticheskogo tela pri uslovii plastichnosti Treska”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 1984, no. 6, 148–156

[10] Burenin A. A., Chernyshov A. D., “Udarnye volny v izotropnom uprugom prostranstve”, Prikl. matematika i mekhanika, 42:4 (1973), 711–717

[11] Burenin A. A., Dudko O. V., Lapteva A. A., “K zakonomernostyam rasprostraneniya deformatsii izmeneniya formy”, Sib. zhurn. industr. matematiki, 14:4(48) (2011), 14–23 | MR | Zbl

[12] Dudko O. V., Potyanikhin D. A., “Avtomodelnaya zadacha nelineinoi dinamicheskoi teorii uprugosti o vzaimodeistvii prodolnoi udarnoi volny s zhestkoi pregradoi”, Vychisl. mekhanika sploshnykh sred, 1:2 (2008), 27–37 | MR

[13] Rakhmatulin Kh. A., “O rasprostranenii volny razgruzki”, Prikl. matematika i mekhanika, 9:1 (1945), 91–100 | MR | Zbl

[14] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, Dokl. AN, 347:2 (1996), 199–201 | Zbl

[15] Burenin A. A., Kovtanyuk L. V., Uprugie effekty pri intensivnom neobratimom deformirovanii, Izd-vo DVGTU, Vladivostok, 2011