Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2013_16_2_a1, author = {G. V. Alekseev and A. V. Lobanov}, title = {Stability estimates for solutions to inverse extremal problems for the {Helmholtz} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {14--25}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/} }
TY - JOUR AU - G. V. Alekseev AU - A. V. Lobanov TI - Stability estimates for solutions to inverse extremal problems for the Helmholtz equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2013 SP - 14 EP - 25 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/ LA - ru ID - SJIM_2013_16_2_a1 ER -
%0 Journal Article %A G. V. Alekseev %A A. V. Lobanov %T Stability estimates for solutions to inverse extremal problems for the Helmholtz equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2013 %P 14-25 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/ %G ru %F SJIM_2013_16_2_a1
G. V. Alekseev; A. V. Lobanov. Stability estimates for solutions to inverse extremal problems for the Helmholtz equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 14-25. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/