Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2013_16_2_a1, author = {G. V. Alekseev and A. V. Lobanov}, title = {Stability estimates for solutions to inverse extremal problems for the {Helmholtz} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {14--25}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/} }
TY - JOUR AU - G. V. Alekseev AU - A. V. Lobanov TI - Stability estimates for solutions to inverse extremal problems for the Helmholtz equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2013 SP - 14 EP - 25 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/ LA - ru ID - SJIM_2013_16_2_a1 ER -
%0 Journal Article %A G. V. Alekseev %A A. V. Lobanov %T Stability estimates for solutions to inverse extremal problems for the Helmholtz equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2013 %P 14-25 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/ %G ru %F SJIM_2013_16_2_a1
G. V. Alekseev; A. V. Lobanov. Stability estimates for solutions to inverse extremal problems for the Helmholtz equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 14-25. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a1/
[1] Cummer S. A., Schurig D., “One path to acoustic cloaking”, New J. Phys., 9 (2007), 45 | DOI
[2] Cummer S. A., Popa B. I., Schurig D. et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Letters, 100 (2008), 024301 | DOI
[3] Romanov V. G., “Obratnaya zadacha difraktsii dlya uravnenii akustiki”, Dokl. AN, 431 (2010), 319–322 | MR | Zbl
[4] Alekseev G. V., Romanov V. G., “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sib. zhurn. industr. matematiki, 14:2(46) (2011), 15–20 | Zbl
[5] Dubinov A. E., Mytareva L. A., “Maskirovka materialnykh tel metodom volnovogo obtekaniya”, Uspekhi fiz. nauk, 180:5 (2010), 475–501 | DOI
[6] Alekseev G. V., Brizitskii R. V., “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sib. zhurn industr. matematiki, 14:1(45) (2011), 3–16 | Zbl
[7] Alekseev G. V., Brizitskii R. V., Romanov V. G., “Otsenki ustoichivostireshenii zadach granichnogo upravleniya dlya uravnenii Maksvella pri smeshannykh granichnykh usloviyakh”, Dokl. AN, 447:1 (2012), 7–12 | MR | Zbl
[8] Alekseev G. V., “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, Dokl. AN, 449:6 (2013), 652–656 | DOI
[9] Alekseev G. V., “Cloaking via impedance boundary condition for the 2-D Helmholtz equation”, Appl. Analysis, 2013 | DOI
[10] Beilina L., Klibanov M. V., “A globally convergent numerical method for a coefficient inverse problem”, SIAM J. Sci. Comput., 31 (2008), 478–509 | DOI | MR | Zbl
[11] Beilina L., Klibanov M. V., “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse Ill-Posed Problems, 20 (2012), 513–565 | MR
[12] Colton D., Kress R., Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verl., Berlin, 2013 | MR | Zbl
[13] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. AN, 395:3 (2004), 322–325 | MR | Zbl
[14] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl