Comparative analysis of the power of goodness-of-fit tests for composite hypotheses in dependence on the estimation method
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results are presented of the power comparison of the Kolmogorov, Cramer–von Mises–Smirnov and Anderson–Darling goodness-of-fit tests for composite hypotheses, depending on the method of parameter estimation. They demonstrate that the maximal power of the tests is achieved by using the maximum likelihood estimation method has the maximal power of tests inn estimating the scale parameter and evaluating both parameters of the normal distribution law. The power is higher at $L$-estimates in the case of the shape parameter of the Weibull distribution law. In estimating the shift parameter, the maximum power is observed in the case of the minimal distance method minimizing the relevant test statistic.
Keywords: goodness-of-fit test, test power, maximum likelihood estimation method, minimum distance method, composite hypothesis.
@article{SJIM_2013_16_1_a8,
     author = {S. N. Postovalov and E. A. Naumova},
     title = {Comparative analysis of the power of goodness-of-fit tests for composite hypotheses in dependence on the estimation method},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a8/}
}
TY  - JOUR
AU  - S. N. Postovalov
AU  - E. A. Naumova
TI  - Comparative analysis of the power of goodness-of-fit tests for composite hypotheses in dependence on the estimation method
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 84
EP  - 94
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a8/
LA  - ru
ID  - SJIM_2013_16_1_a8
ER  - 
%0 Journal Article
%A S. N. Postovalov
%A E. A. Naumova
%T Comparative analysis of the power of goodness-of-fit tests for composite hypotheses in dependence on the estimation method
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 84-94
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a8/
%G ru
%F SJIM_2013_16_1_a8
S. N. Postovalov; E. A. Naumova. Comparative analysis of the power of goodness-of-fit tests for composite hypotheses in dependence on the estimation method. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a8/

[1] Lemeshko B. Yu., Lemeshko S. B., Postovalov S. N., “Sravnitelnyi analiz moschnosti kriteriev soglasiya pri blizkikh konkuriruyuschikh gipotezakh. I. Proverka prostykh gipotez”, Sib. zhurn. industr. matematiki, 11:2(34) (2008), 96–111 | MR | Zbl

[2] Lemeshko B. Yu., Lemeshko S. B., Postovalov S. N., “Sravnitelnyi analiz moschnosti kriteriev soglasiya pri blizkikh alternativakh. II. Proverka slozhnykh gipotez”, Sib. zhurn. industr. matematiki, 11:4(36) (2008), 78–93 | MR | Zbl

[3] Lemeshko B. Yu., Postovalov S. N., “O zavisimosti raspredelenii statistik neparametricheskikh kriteriev i ikh moschnosti ot metoda otsenivaniya parametrov”, Zavodskaya laboratoriya. Diagnostika materialov, 67:7 (2001), 62–71

[4] Lemeshko B. Yu., Lemeshko S. B., Postovalov S. N., Chimitova E. V., Statisticheskii analiz dannykh, modelirovanie i issledovanie veroyatnostnykh zakonomernostei. Kompyuternyi podkhod, Izd-vo NGTU, Novosibirsk, 2011

[5] Bolshev L. N., Smirnov N. V., Tablitsy matematicheskoi statistiki, Nauka, M., 1983 | MR

[6] Lemeshko B. Yu., Lemeshko S. B., Postovalov S. N., “Statistic distribution models for some nonparametric goodness-of-fit tests in testing composite hypotheses”, Comm. Statist. Theory Methods, 39:3 (2010), 460–471 | DOI | MR | Zbl

[7] Ogawa J., “Contributions to the theory of systematic statistics. I”, Osaka J. Math., 3 (1951), 175–213 | MR | Zbl

[8] Sarkhan A. E., Grinberg B. G., Vvedenie v teoriyu poryadkovykh statistik, Statistika, M., 1970

[9] Lemeshko B. Yu., Chimitova E. V., “Postroenie optimalnykh $L$-otsenok parametrov sdviga i masshtaba raspredelenii po vyborochnym kvantilyam”, Sib. zhurn. industr. matematiki, 4:2(8) (2001), 166–183 | MR | Zbl

[10] Lemeshko B. Yu., Chimitova E. V., “Optimalnye $L$-otsenki parametrov sdviga i masshtaba raspredelenii po vyborochnym kvantilyam”, Zavodskaya laboratoriya. Diagnostika materialov, 70:1 (2004), 54–66