Inverse problem of the Boussinesq--Love equation with an extra integral condition
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 75-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses an inverse boundary value problem for the Boussinesq–Love equation with an extra integral condition of the first kind. The problem is firstly reduced to the problem that is in a sense quivalent to the original. Then, the Fourier mathod is applied, reducing the problem to solution of a system of integral equations. The existence and uniqueness of the latter equation is proved by the contraction mapping principle, which also yoelds the unique solution of the equivalent problem. Using equivalence, we finally prove the unique existence of a classical solution of the problem under consideration.
Keywords: inverse boundary problem, Fourier method, classical solution.
Mots-clés : Boussinesq–Love equation
@article{SJIM_2013_16_1_a7,
     author = {Ya. T. Megraliev},
     title = {Inverse problem of the {Boussinesq--Love} equation with an extra integral condition},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a7/}
}
TY  - JOUR
AU  - Ya. T. Megraliev
TI  - Inverse problem of the Boussinesq--Love equation with an extra integral condition
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 75
EP  - 83
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a7/
LA  - ru
ID  - SJIM_2013_16_1_a7
ER  - 
%0 Journal Article
%A Ya. T. Megraliev
%T Inverse problem of the Boussinesq--Love equation with an extra integral condition
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 75-83
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a7/
%G ru
%F SJIM_2013_16_1_a7
Ya. T. Megraliev. Inverse problem of the Boussinesq--Love equation with an extra integral condition. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a7/

[1] Tikhonov A. I., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:5 (1943), 195–198 | MR

[2] Lavrentev M. M., “Ob odnoi obratnoi zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:5 (1964), 520–521 | MR

[3] Lavrentev M. M., Romanov V. G., Shishatskii S. T., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[5] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[6] Megraliev Ya. T., “Obratnaya kraevaya zadacha dlya differentsialnogo uravneniya s chastnymi proizvodnymi chetvertogo poryadka s integralnym usloviem”, Vestn. YuUrGU. Ser. Matematika. Mekhanika. Fizika, 32:5 (2011), 51–56

[7] Megraliev Ya. T., “Ob odnoi obratnoi kraevoi zadache dlya giperbolicheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Vestn. Bryansk. gos. un-ta, 2011, no. 4, 22–28

[8] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[9] Khudaverdiev K. I., Veliev A. A., Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010