Nonisothermic deformation of the elastoviscoplastic flat heavy layer
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 56-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution is given of the thermoelasticoplastic problem about slide of a heavy layer from an inclined plane under heating. The creep effect is stipulated to the development of a viscoplastic flow at the cost of a dependence from the temperature of the material layer yield strength. Within the theory of large deformations the law of the propagation of elastoplastic boundary is indicated, stresses, strains and strain rates are calculated both in the area of thermoelastic deformation and in the area of flow.
Keywords: elasticity, plasticity, viscosity, thermal conductivity, large deformation.
@article{SJIM_2013_16_1_a5,
     author = {L. V. Kovtanyuk and G. L. Panchenko},
     title = {Nonisothermic deformation of the elastoviscoplastic flat heavy layer},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a5/}
}
TY  - JOUR
AU  - L. V. Kovtanyuk
AU  - G. L. Panchenko
TI  - Nonisothermic deformation of the elastoviscoplastic flat heavy layer
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 56
EP  - 65
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a5/
LA  - ru
ID  - SJIM_2013_16_1_a5
ER  - 
%0 Journal Article
%A L. V. Kovtanyuk
%A G. L. Panchenko
%T Nonisothermic deformation of the elastoviscoplastic flat heavy layer
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 56-65
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a5/
%G ru
%F SJIM_2013_16_1_a5
L. V. Kovtanyuk; G. L. Panchenko. Nonisothermic deformation of the elastoviscoplastic flat heavy layer. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a5/

[1] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[2] Ogibalov P. M., Mirzadzhanzade A. Kh., Nestatsionarnye dvizheniya vyazkoplasticheskikh sred, Izd-vo MGU, M., 1970

[3] Rezunov A. V., Chernyshov A. D., “Zadacha o chistom sdvige vyazko-plasticheskogo materiala mezhdu dvumya tsilindricheskimi poverkhnostyami”, Mekhanika deformiruemogo tverdogo tela, 1975, no. 1, 32–36

[4] Myasnikov V. P., “Nekotorye tochnye resheniya dlya pryamolineinykh dvizhenii vyazkoplasticheskoi sredy”, Prikl. mekhanika i tekhn. fizika, 1961, no. 2, 79–86

[5] Bykovtsev G. I., Chernyshov A. D., “O vyazkoplasticheskom techenii v nekrugovykh tsilindrakh pri nalichii perepada davleniya”, Prikl. mekhanika i tekhn. fizika, 1964, no. 4, 94–96

[6] Lions J. L., Stampacchia G., “Variational inequalities”, Comm. Pure Appl. Math., 20 (1967), 493–519 | DOI | MR | Zbl

[7] Lee E. H., “Elastic-plastic deformation at finite strains”, Trans. ASME J. Appl. Mech., 36:1 (1969), 1–6 | DOI | Zbl

[8] Rogovoi A. A., “Opredelyayuschie sootnosheniya dlya konechnykh uprugo-neuprugikh deformatsii”, Prikl. mekhanika i tekhn. fizika, 46:5 (2005), 138–149 | MR | Zbl

[9] Bykovtsev G. I., Shitikov A. V., “Konechnye deformatsii uprugoplasticheskikh sred”, Dokl. AN SSSR, 311:1 (1990), 59–62 | MR | Zbl

[10] Burenin A. A., Kovtanyuk L. V., Uprugie effekty pri intensivnom neobratimom deformirovanii, izd. DVGTU (DVFU), Vladivostok, 2011

[11] Kovtanyuk L. V., “O prodavlivanii uprugovyazkoplasticheskogo materiala cherez zhestkuyu krugovuyu tsilindricheskuyu matritsu”, Dokl. RAN, 400:6 (2005), 764–766 | MR

[12] Burenin A. A., Kovtanyuk L. V., Mazelis A. L., “Prodavlivanie uprugovyazkoplasticheskogo materiala mezhdu zhestkimi koaksialnymi tsilindricheskimi poverkhnostyami”, Prikl. matematika i mekhanika, 70:3 (2006), 481–489 | Zbl

[13] Burenin A. A., Kovtanyuk L. V., Ustinova A. S., “Ob uchete uprugikh svoistv nenyutonovskogo materiala pri ego viskozimetricheskom techenii”, Prikl. mekhanika i tekhn. fizika, 49:2 (2008), 143–151 | MR

[14] Burenin A. A., Kovtanyuk L. V., Mazelis A. L., “Razvitie i tormozhenie pryamolineinogo osesimmetrichnogo vyazkoplasticheskogo techeniya i uprugoe posledeistvie posle ego ostanovki”, Prikl. mekhanika i tekhn. fizika, 2010, no. 2, 140–147

[15] Burenin A. A., Kovtanyuk L. V., Ustinova A. S., “Viskozimetricheskoe techenie neszhimaemogo uprugovyazkoplasticheskogo materiala pri nalichii smazki na granichnykh poverkhnostyakh”, Sib. zhurn. industr. matematiki, 15:2(50) (2012), 43–55

[16] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, Dokl. RAN, 347:2 (1996), 199–201 | Zbl

[17] Kovtanyuk L. V., “Modelirovanie bolshikh deformatsii v neizotermicheskom sluchae”, Dalnevostochnyi mat. zhurn., 5:1 (2004), 110–120

[18] Burenin A. A., Kovtanyuk L. V., Panchenko G. L., “K modelirovaniyu bolshikh uprugovyazkoplasticheskikh deformatsii s uchetom teplofizicheskikh effektov”, Izv. AN. Mekhanika tverdogo tela, 2010, no. 4, 107–120

[19] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[20] Znamenskii V. A., Ivlev D. D., “Ob uravneniyakh vyazkoplasticheskogo tela pri kusochno-lineinykh potentsialakh”, Izv. AN SSSR. OTN. Mekhanika i mashinostroenie, 1963, no. 6, 114–118

[21] Bykovtsev G. I., Semykina T. D., “O vyazkoplasticheskom techenii kruglykh plastin i obolochek vrascheniya”, Izv. AN SSSR. Mekhanika i mashinostroenie, 1964, no. 4, 68–76

[22] Kovtanyuk L. V., “Vyazkoplasticheskoe techenie v osnovanii tyazhelogo rastuschego uprugovyazkoplasticheskogo sloya na naklonnoi ploskosti”, Modelirovanie i mekhanika, izd. Sib. gos. aerokosmich. un-ta, Krasnoyarsk, 2012, 50–55

[23] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl