On the propagation of perturbations along an incompressible elastic medium with multimodulus shear resistance
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study the features of the propagation of boundary perturbations in the multimodulus incompressible elastic medium with a different resistance to shear stress applied in opposite directions. For the case of plane waves the one-dimensional boundary value problems of a shock shift by the boundary of the halfspace are solved. We show that some piecewise-linear multimodulus incompressible elastic medium nonlinear wave processes (strong and weak breaks, moving as a rigid body layers) can arise.
Keywords: incompressibility, multimodulus, elasticity, one-dimensional shear, dynamic deformation.
@article{SJIM_2013_16_1_a2,
     author = {O. V. Dudko and A. A. Lapteva},
     title = {On the propagation of perturbations along an incompressible elastic medium with multimodulus shear resistance},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a2/}
}
TY  - JOUR
AU  - O. V. Dudko
AU  - A. A. Lapteva
TI  - On the propagation of perturbations along an incompressible elastic medium with multimodulus shear resistance
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 21
EP  - 28
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a2/
LA  - ru
ID  - SJIM_2013_16_1_a2
ER  - 
%0 Journal Article
%A O. V. Dudko
%A A. A. Lapteva
%T On the propagation of perturbations along an incompressible elastic medium with multimodulus shear resistance
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 21-28
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a2/
%G ru
%F SJIM_2013_16_1_a2
O. V. Dudko; A. A. Lapteva. On the propagation of perturbations along an incompressible elastic medium with multimodulus shear resistance. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 21-28. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a2/

[1] Bessonov D. E., Zezin Yu. P., Lomakin E. V., “Raznosoprotivlyaemost zernistykh kompozitov na osnove nenasyschennykh poliefirov”, Izv. Saratov. un-ta. Novaya ser. Matematika. Mekhanika. Informatika, 9:4, ch. 2 (2009), 9–13

[2] Lushnikov V. V., Vulis P. D., Litvinov B. M., “O sootnoshenii modulei deformatsii pri szhatii i rastyazhenii gruntov”, Osnovaniya, fundamenty i mekhanika gruntov, 1973, no. 6, 18–19

[3] Sadovskaya O. V., Sadovskii V. M., Matematicheskoe modelirovanie v mekhanike sypuchikh sred, Fizmatlit, M., 2008 | Zbl

[4] Myasnikov V. P., Oleinikov A. I., Osnovy mekhaniki geterogenno-soprotivlyayuschikhsya sred, Dalnauka, Vladivostok, 2007

[5] Burenin A. A., Yarushina V. M., “K modelirovaniyu deformirovaniya materialov, poraznomu soprotivlyayuschikhsya rastyazheniyu i szhatiyu”, Problemy mekhaniki deformiruemykh tverdykh tel i gornykh porod, Sb. statei k 75-letiyu E. I. Shemyakina, Fizmatlit, M., 2006, 100–106

[6] Ambartsumyan S. A., Raznomodulnaya teoriya uprugosti, Nauka, M., 1982 | MR | Zbl

[7] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[8] Maslov V. P., Mosolov P. P., “Obschaya teoriya uravnenii dvizheniya raznomodulnoi uprugoi sredy”, Prikl. matematiki i mekhanika, 49:3 (1985), 419–437 | MR | Zbl

[9] Myasnikov V. P., “Geofizicheskie modeli sploshnykh sred”, Materialy 5 Vsevoyuz. s'ezda po teor. i prikl. mekhanike, Tez. dokl., Nauka, M., 1981, 263–264

[10] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[11] Dudko O. V., Lapteva A. A., Semenov K. T., “O rasprostranenii ploskikh udarnykh voln”, Dalnevost. mat. zhurn., 6:1–2 (2005), 94–105