On an optimal control problem of thin inclusions shapes in elastic bodies
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 138-147

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns an optimal control problem for a 2D elastic body with a thin rigid inclusion and a crack. The thin rigid inclusion is supposed to delaminate and contain a kink. Inequality type boundary conditions are imposed at the crack faces to provide a mutual nonpenetration between the crack faces. The cost functional characterizes the derivative of the energy function with respect to the crack length. The position of the kink is considered as a control function. The main result is the existence of a solution to the optimal control problem.
Keywords: crack, thin rigid inclusion, nonlinear boundary conditions, optimal control, derivative of energy functional.
@article{SJIM_2013_16_1_a13,
     author = {V. V. Shcherbakov},
     title = {On an optimal control problem of thin inclusions shapes in elastic bodies},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/}
}
TY  - JOUR
AU  - V. V. Shcherbakov
TI  - On an optimal control problem of thin inclusions shapes in elastic bodies
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 138
EP  - 147
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/
LA  - ru
ID  - SJIM_2013_16_1_a13
ER  - 
%0 Journal Article
%A V. V. Shcherbakov
%T On an optimal control problem of thin inclusions shapes in elastic bodies
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 138-147
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/
%G ru
%F SJIM_2013_16_1_a13
V. V. Shcherbakov. On an optimal control problem of thin inclusions shapes in elastic bodies. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 138-147. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/