On an optimal control problem of thin inclusions shapes in elastic bodies
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 138-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns an optimal control problem for a 2D elastic body with a thin rigid inclusion and a crack. The thin rigid inclusion is supposed to delaminate and contain a kink. Inequality type boundary conditions are imposed at the crack faces to provide a mutual nonpenetration between the crack faces. The cost functional characterizes the derivative of the energy function with respect to the crack length. The position of the kink is considered as a control function. The main result is the existence of a solution to the optimal control problem.
Keywords: crack, thin rigid inclusion, nonlinear boundary conditions, optimal control, derivative of energy functional.
@article{SJIM_2013_16_1_a13,
     author = {V. V. Shcherbakov},
     title = {On an optimal control problem of thin inclusions shapes in elastic bodies},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/}
}
TY  - JOUR
AU  - V. V. Shcherbakov
TI  - On an optimal control problem of thin inclusions shapes in elastic bodies
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 138
EP  - 147
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/
LA  - ru
ID  - SJIM_2013_16_1_a13
ER  - 
%0 Journal Article
%A V. V. Shcherbakov
%T On an optimal control problem of thin inclusions shapes in elastic bodies
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 138-147
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/
%G ru
%F SJIM_2013_16_1_a13
V. V. Shcherbakov. On an optimal control problem of thin inclusions shapes in elastic bodies. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 138-147. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a13/

[1] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[3] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[4] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[5] Rudoi E. M., “Differentsirovanie funktsionalov energii v dvumernoi teorii uprugosti dlya tel, soderzhaschikh krivolineinye treschiny”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 45:6 (2004), 83–94 | MR | Zbl

[6] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Mekhanika tverdogo tela, 2007, no. 6, 113–127

[7] Banichuk N. V., Optimizatsiya form uprugikh tel, Nauka, M., 1980 | MR

[8] Banichuk N. V., Optimizatsiya elementov konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988

[9] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987 | MR

[10] Khaslinger Ya., Neitaanmyaki P., Konechnoelementnaya approksimatsiya dlya optimalnogo proektirovaniya form: teoriya i prilozheniya, Mir, M., 1992

[11] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR

[12] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl

[13] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, ZAMM, 91:2 (2011), 125–137 | DOI | MR | Zbl

[14] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Europ. J. Mech. A/Solids, 29:3 (2010), 392–399 | DOI | MR

[15] Khludnev A., Leugering G., Specovius-Neugebauer M., “Optimal control of inclusion and crack shapes in elastic bodies”, J. Optim. Theory Appl., 155:1 (2012), 54–78 | DOI | MR | Zbl

[16] Khludnev A. M., Negri M., “Optimal rigid inclusion shapes in elastic bodies with cracks”, ZAMP, 64:1 (2013), 179–191 | DOI | Zbl

[17] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh tonkie zhestkie vklyucheniya”, Dokl. AN, 430:1 (2010), 47–50 | MR