Geveralized functionally-invariant nonhomogeneous wave equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 126-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a definition of generalized functionally invariant solutions of class $N$ of differential equations for sound propagation in a two-dimensional stationary inhomogeneous medium. The conditions are studied on functions of the density and speed of sound under which there are generalized functionally invariant solutions of class 2. The method is presented for constructing exact generalized functionally invariant solutions.
Keywords: inhomogeneous wave equation, generalized functionally invariant solutions
Mots-clés : exact solutions.
@article{SJIM_2013_16_1_a12,
     author = {Yu. V. Shan'ko},
     title = {Geveralized functionally-invariant nonhomogeneous wave equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {126--137},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a12/}
}
TY  - JOUR
AU  - Yu. V. Shan'ko
TI  - Geveralized functionally-invariant nonhomogeneous wave equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 126
EP  - 137
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a12/
LA  - ru
ID  - SJIM_2013_16_1_a12
ER  - 
%0 Journal Article
%A Yu. V. Shan'ko
%T Geveralized functionally-invariant nonhomogeneous wave equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 126-137
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a12/
%G ru
%F SJIM_2013_16_1_a12
Yu. V. Shan'ko. Geveralized functionally-invariant nonhomogeneous wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 126-137. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a12/

[1] Brekhovskikh L. M., Godin O. A., Akustika sloistykh sred, Nauka, M., 1989

[2] Hearn A. C., REDUCE User's Manual, Version 3.8, URL: , 2004 http://reduce-algebra.sourceforge.net/manual/manual-pdf.html

[3] Erugin N. P., Smirnov M. M., “Funktsionalno-invariantnye resheniya differentsialnykh uravnenii”, Differents. uravneniya, 17:5 (1981), 853–865 | MR | Zbl

[4] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. I”, Sib. zhurn. industr. matematiki, 14:1 (2011), 27–39 | Zbl

[5] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[6] Makov Yu. N., “Otnositelno neiskazhayuschiesya volny i profili v nelineinoi akustike. Tochnye resheniya uravnenii”, Akusticheskii zhurn., 55:2 (2009), 160–170

[7] Taimanov I. A., Tsarev S. P., “Dvumernye operatory Shredingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, Uspekhi mat. nauk, 62:3(375) (2007), 217–218 | DOI | MR | Zbl

[8] Kaptsov O. V., Metody integrirovaniya uravnenii s chastnymi proizvodnymi, Fizmatlit, M., 2009