Waves in a~homogeneous channel with a~periodical chain of thin-wall plates
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 106-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is propagation of acoustic waves in a uniform rectangular channel with one-dimensional periodic chain of lates on using the group theory of local plane symmetry in the two-dimensional formulation. Dispersion relations are obtained for the modes, orthogonal to plug mode. The pass bands and stop bands of these modes are obtained and the dependence of the waveguide properties on the geometrical parameters of the plates chain are carried out. It is shown that the waveguide properties of the channel with the plates chain for the waves orthogonal to plug mode are significantly better than the waveguide properties of a free channel. The lower bound of the pass band of the waves in channel with plates orthogonal to plug mode lies below than the lower bound of the pass band of the free channel.
Keywords: waveguide properties of the channels, one-dimensionally periodic chains of obstacles.
@article{SJIM_2013_16_1_a10,
     author = {S. V. Sukhinin and V. S. Yurkovskiy},
     title = {Waves in a~homogeneous channel with a~periodical chain of thin-wall plates},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a10/}
}
TY  - JOUR
AU  - S. V. Sukhinin
AU  - V. S. Yurkovskiy
TI  - Waves in a~homogeneous channel with a~periodical chain of thin-wall plates
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 106
EP  - 115
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a10/
LA  - ru
ID  - SJIM_2013_16_1_a10
ER  - 
%0 Journal Article
%A S. V. Sukhinin
%A V. S. Yurkovskiy
%T Waves in a~homogeneous channel with a~periodical chain of thin-wall plates
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 106-115
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a10/
%G ru
%F SJIM_2013_16_1_a10
S. V. Sukhinin; V. S. Yurkovskiy. Waves in a~homogeneous channel with a~periodical chain of thin-wall plates. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a10/

[1] Sukhinin S. V., Bardakhanov S. P., “Eolovy tona plastiny v kanale”, Prikl. mekhanika i tekhn. fizika, 1998, no. 2, 69–77 | Zbl

[2] Nikulin V. V., Shafarevich I. R., Geometrii i gruppy, Nauka, M., 1983 | MR

[3] Lyubarskii G. Ya., Teoriya grupp i ee primenenie v fizike, Fizmatgiz, M., 1958 | MR

[4] Sukhinin S. V., “Volnovodnoe, anomalnoe i shepchuschee svoistva periodicheskoi tsepochki prepyatstvii”, Sib. zhurn. industr. matematiki, 1:2 (1998), 175–198 | MR | Zbl

[5] Sukhinin S. V., “Effekt shepchuschei poverkhnosti”, Prikl. matematika i mekhanika, 63:6 (1999), 923–937 | MR

[6] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974 | Zbl

[7] Grinchenko V. T., Vovk I. V., Matsypura V. T., Osnovy akustiki, Kiev, 2009

[8] Mexiner J., The behavior of electromagnetic fields at edges, Tech. Rpt. Em-72, Inst. Math. Sci., N.Y. Univ., N.Y., 1954

[9] Khënl Kh., Maue A., Vestfal K., Teoriya difraktsii, Mir, M., 1964

[10] Brillyuen L., Parodi M., Rasprostranenie voln v periodicheskikh strukturakh, Izd-vo inostr. lit., M., 1959