A numerical method for solving the Dirichlet problem for the wave equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 90-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for solving the Dirichlet problem for the wave equation in the two-dimensional space is constructed. An analysis of the ill-posedness of the problem is carried out and a reguralization algorthm is constructed. The first step in the regularization of the problem consists in expansion in a Forier series with respect to one of the variables and passage to a finite sequence of Dirichlet problems for the wave equation in the one-dimensional space. Each of the Dirichlet problems obtained for the wave equation in the one-dimensional space is reduced to the inverse problem $Aq=f$ to some direct (correct) problem. We accomplish an analysis of the ill-posedness degree of the inverse problem on the basis of the study of the nature of the decay of the singular values of $A$ and its discrete analog $A_{mn}$. For relatively small values $m$ and $n$, we develop a numerical algorithm for constructing $r$-solutions to the inverse problem. For the general case, we apply an optimization method for solving the inverse problem. The results of numerical calculations are given.
Keywords: Dirichlet problem, wave equation, ill-posedness degree
Mots-clés : singular value decomposition.
@article{SJIM_2012_15_4_a8,
     author = {S. I. Kabanikhin and O. I. Krivorot'ko},
     title = {A numerical method for solving the {Dirichlet} problem for the wave equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {90--101},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a8/}
}
TY  - JOUR
AU  - S. I. Kabanikhin
AU  - O. I. Krivorot'ko
TI  - A numerical method for solving the Dirichlet problem for the wave equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 90
EP  - 101
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a8/
LA  - ru
ID  - SJIM_2012_15_4_a8
ER  - 
%0 Journal Article
%A S. I. Kabanikhin
%A O. I. Krivorot'ko
%T A numerical method for solving the Dirichlet problem for the wave equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 90-101
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a8/
%G ru
%F SJIM_2012_15_4_a8
S. I. Kabanikhin; O. I. Krivorot'ko. A numerical method for solving the Dirichlet problem for the wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 90-101. http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a8/

[1] Hadamard J., “Equations aux derivees partielles, le cas hyperbolique”, Enseign. Math, 35:1 (1936), 25–29 | MR

[2] Huber A., “Die erste Randwertaufgabe für geschlossene Bereiche bei der Gleichung $u_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl

[3] Mangeron D., “Sopra un problema al contorno per un'equazione differenziable alle derivate parziali di quarto ordine con le caratteristiche realidoppie”, Rend. Accad. Sci. Fis. Mat. Napoli, 2 (1932), 29–40 | MR | Zbl

[4] Bourgin D. G., “The Dirichlet problem for the damped wave equation”, Duke Math. J., 7 (1940), 97–120 | DOI | MR | Zbl

[5] Bourgin D. G., Duffin R., “The Dirichlet problem for the vibrating string equation”, Bull. Amer. Math. Soc., 45 (1939), 851–858 | DOI | MR | Zbl

[6] Ovsepyan S. G., “O porozhdayuschem mnozhestve granichnykh tochek v zadache Dirikhle dlya uravneniya kolebaniya struny v mnogosvyaznykh oblastyakh”, Dokl. AN ArmSSR, 39:4 (1964), 193–200

[7] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Nauk. dumka, Kiev, 1965 | MR | Zbl

[8] Borok V. M., “Klassy edinstvennosti resheniya kraevoi zadachi v beskonechnom sloe”, Dokl. AN SSSR, 183:5 (1968), 995–998 | MR | Zbl

[9] Borok V. M., “Klassy edinstvennosti resheniya kraevoi zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Mat. sbornik, 79(121):2 (1969), 293–304 | MR | Zbl

[10] Borok V. M., “Korrektno razreshimye kraevye zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR. Matematika, 35:1 (1971), 185–201 | MR | Zbl

[11] Borok V. M., Antypko I. I., “Kriterii bezuslovnoi korrektnosti kraevoi zadachi v sloe”, Teoriya funktsii, funktsionalnogo analiza i ikh prilozheniya, 26 (1976), 3–9 | MR | Zbl

[12] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Dokl. AN SSSR. Matematika, 18:1 (1954), 3–50 | MR | Zbl

[13] Sobolev S. L., “O dvizhenie simmetricheskogo volchka s polostyu, napolnennoi zhidkostyu”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 1960, no. 3, 20–55 | Zbl

[14] Aleksandryan R. A., K voprosu o zavisimosti pochti periodichnosti reshenii differentsialnykh uravnenii ot vida oblasti, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, M., 1949

[15] Denchev R., “O spektre odnogo operatora”, Dokl. AN SSSR, 126:2 (1959), 259–262 | MR | Zbl

[16] Zelenyak T. I., Izbrannye voprosy kachestvennoi teorii uravnenii s chastnymi proizvodnymi, izd. NGU, Novosibirsk, 1970

[17] Zelenyak T. I., Fokin M. V., “O nekotorykh kachestvennykh svoistvakh reshenii uravnenii S. L. Soboleva”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k nekotorym zadacham matematicheskoi fiziki, Nauka, Novosibirsk, 1973, 121–124

[18] Fokin M. V., “O zadache Dirikhle dlya uravneniya kolebaniya struny”, Korrektnye nachalno-kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, izd. NGU, Novosibirsk, 1981, 178–182

[19] Aldashev S. A., “The Well-Posedness of the Dirichlet Problem in the Cylindric Domain for the Multidimensional Wave Equation”, Math. Problems in Engineering, 2010 (2010), Article ID 653215, 7 pp. | MR | Zbl

[20] Ptashnik B. I., Nekorrektnye kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Nauk. dumka, Kiev, 1984 | MR

[21] Burskii V. P., Metody issledovaniya granichnykh zadach dlya obschikh differentsialnykh uravnenii, Nauk. dumka, Kiev, 2002

[22] Kabanikhin S. I., Bektemesov M. A., Nurseitov D. B., Krivorotko O. I., Alimova A. N., “Optimization Method in Dirichlet Problem for Wave Equation”, J. Inverse Ill-Posed Probl., 20:2 (2012), 193–211 | MR

[23] Zhang C., Knepley M. G., Yuen D. A., Shi Y., Two New Approaches in Solving the Nonlinear Shallow Water Equations for Tsunamis, Preprint, Elsevier, Argonne, 2007, 16 pp.

[24] Kabanikhin S. I., Karchevsky A. L., “Method for solving the Cauchy Problem for an Elliptic Equation”, J. Inverse Ill-posed Prob., 3:1 (1995), 21–46 | MR | Zbl

[25] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[26] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009