Exact solutions to the equations of the dynamic asymmetric model of elasticity
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 38-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the group stratification of the equations of the dynamic asymmetric model of elasticity effectively used in the study of elastic materials made of polymers, we obtain a system that, after renaming the functions, becomes equivalent to these equations and contains fewer additional functions than the union of the resolving and automorphic systems of the accomplished group stratification. Among first-order systems equivalent to these equations it contains the least number of additional functions and is the only such system up to a nondegenerate linear transformation of the additional functions. We find its principal Lie transformation group, an optimal system of its subgroups, and their universal invariants. Some invariant and partially invariant exact solutions are found; their physical meaning is explained.
Keywords: asymmetric elasticity, optimal system of subgroups
Mots-clés : group stratification, invariant solutions.
@article{SJIM_2012_15_4_a3,
     author = {N. F. Belmetsev and Yu. A. Chirkunov},
     title = {Exact solutions to the equations of the dynamic asymmetric model of elasticity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {38--50},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a3/}
}
TY  - JOUR
AU  - N. F. Belmetsev
AU  - Yu. A. Chirkunov
TI  - Exact solutions to the equations of the dynamic asymmetric model of elasticity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 38
EP  - 50
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a3/
LA  - ru
ID  - SJIM_2012_15_4_a3
ER  - 
%0 Journal Article
%A N. F. Belmetsev
%A Yu. A. Chirkunov
%T Exact solutions to the equations of the dynamic asymmetric model of elasticity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 38-50
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a3/
%G ru
%F SJIM_2012_15_4_a3
N. F. Belmetsev; Yu. A. Chirkunov. Exact solutions to the equations of the dynamic asymmetric model of elasticity. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 38-50. http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a3/

[1] Annin B. D., Bytev V. O., Senashov S. I., Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985 | MR | Zbl

[2] Bytev V. O., “Building of mathematical models of continuum media on the basis of invariance principle”, Acta. Appl. Math., 16 (1989), 117–142 | DOI | MR | Zbl

[3] Bytev V. O., Shkutin L. I., “Asimmetrichnaya uprugost”, Sb. statei 15 zimnei shkoly po mekhanike sploshnykh sred, Ch. 1, UrO RAN, 2007, 166–169

[4] Slezko I. V., Modelirovanie nekotorykh protsessov asimmetrichnoi uprugosti, Dis. $\dots$ kand. fiz.-mat. nauk, Tyumen, 2009

[5] Chirkunov Yu. A., Gruppovoi analiz lineinykh i kvazilineinykh differentsialnykh uravnenii, izd. NGUEU, Novosibirsk, 2007

[6] Chirkunov Yu. A., “Gruppovoe rassloenie uravnenii Lame klassicheskoi dinamicheskoi teorii uprugosti”, Izv. AN. Mekhanika tverdogo tela, 2009, no. 3, 47–54

[7] Chirkunov Yu. A., “Usloviya lineinoi avtonomnosti osnovnoi algebry Li sistemy lineinykh differentsialnykh uravnenii”, Dokl. AN, 426:5 (2009), 605–607 | MR | Zbl

[8] Chirkunov Yu. A., “Sistemy lineinykh differentsialnykh uravnenii, simmetrichnye otnositelno preobrazovanii, nelineinykh po funktsii”, Sib. mat. zhurn., 50:3 (2009), 680–686 | MR | Zbl

[9] Chirkunov Yu. A., “O nelineinykh otobrazheniyakh s matritsei Yakobi, kommutiruyuschei s koltsom postoyannykh matrits”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:1 (2010), 108–118 | Zbl

[10] Chirkunov Yu. A., “Sistemy lineinykh differentsialnykh uravnenii c ne $x$-avtonomnoi osnovnoi algebroi Li”, Sib. zhurn. industr. matematiki, 14:2(46) (2011), 112–123 | Zbl

[11] Chirkunov Yu. A., “A criterion for the existence of a nonlinearmapping whose Jacobian matrix commutes with a matrix ring”, Siberian Adv. Math., 21:4 (2011), 250–258 | DOI | MR

[12] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, izd. NGTU, Novosibirsk, 2012

[13] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl