Tikhonov well-posedness of the identification problem for fixing conditions for mechanical systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the identification of fixing conditions is considered for distributed mechanical systems from three natural frequencies of their oscillations. Basing on the Plücker condition, which appears in the reconstruction of a matrix from its minors of maximal order, we construct the well-posedness set of the problem and prove its Tikhonov well-posedness. For a wide class of problems, we find an explicit solution to the identification problem for the matrix of boundary conditions written down in terms of the characteristic determinant of the corresponding spectral problem. We give examples of the solution of specific problems of mechanics and a counterexample showing that two natural frequencies are not enough for the uniqueness in the identification of the boundary conditions.
Keywords: Tikhonov well-posedness, inverse problem, identification of boundary conditions, distributed mechanical systems, natural frequencies, eigenvalues.
Mots-clés : Plücker condition
@article{SJIM_2012_15_4_a2,
     author = {A. M. Akhtyamov and A. V. Muftakhov},
     title = {Tikhonov well-posedness of the identification problem for fixing conditions for mechanical systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a2/}
}
TY  - JOUR
AU  - A. M. Akhtyamov
AU  - A. V. Muftakhov
TI  - Tikhonov well-posedness of the identification problem for fixing conditions for mechanical systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 24
EP  - 37
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a2/
LA  - ru
ID  - SJIM_2012_15_4_a2
ER  - 
%0 Journal Article
%A A. M. Akhtyamov
%A A. V. Muftakhov
%T Tikhonov well-posedness of the identification problem for fixing conditions for mechanical systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 24-37
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a2/
%G ru
%F SJIM_2012_15_4_a2
A. M. Akhtyamov; A. V. Muftakhov. Tikhonov well-posedness of the identification problem for fixing conditions for mechanical systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 24-37. http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a2/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[3] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[4] Lavrentev M. M., Reznitskaya K. Kh., Yakhno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Novosibirsk, 1982 | MR

[5] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR | Zbl

[6] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR | Zbl

[7] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Izd-vo In-ta matematiki, Novosibirsk, 1999 | MR

[8] Akhtyamov A. M., Mouftakhov A. V., “Identification of boundary conditions using natural frequencies”, Inverse Problems in Science and Engineering, 12:4 (2004), 393–408 | DOI | MR

[9] Akhtyamov A. M., Teoriya identifikatsii kraevykh uslovii i ee prilozheniya, Fizmatlit, M., 2009 | Zbl

[10] Akhatov I. Sh., Akhtyamov A. M., “Opredelenie vida zakrepleniya sterzhnya po sobstvennym chastotam ego izgibnykh kolebanii”, Prikl. matematika i mekhanika, 65:2 (2001), 290–298 | MR | Zbl

[11] Akhtyamov A. M., “Mozhno li opredelit vid zakrepleniya koleblyuscheisya plastiny po ee zvuchaniyu?”, Akusticheskii zhurnal, 49:3 (2003), 325–331

[12] V. V. Bolotin (red.), Vibratsii v tekhnike, Spravochnik, v. 1, Kolebaniya lineinykh sistem, Mashinostroenie, M., 1978

[13] Kollatts L., Zadachi na sobstvennye znacheniya (s tekhnicheskimi prilozheniyami), Nauka, M., 1968

[14] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[15] Postnikov M. M., Lineinaya algebra i differentsialnaya geometriya, Nauka, M., 1979 | MR

[16] Mamford D. B., Algebraicheskaya geometriya, v. 1, Kompleksnye mnogoobraziya, Mir, M., 1979 | MR

[17] Hodge W. V. D., Pedoe D., Methods of Algebraic Geometry, Univ. Press, Cambridge, 1994

[18] Finikov S. P., Teoriya par kongruentsii, Gostekhizdat, M., 1956

[19] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001 | Zbl

[20] Akhtyamov A. M., Safina G. F., “Opredelenie vibrozaschitnogo zakrepleniya truboprovoda”, Prikl. mekhanika i tekhn. fizika, 49:1 (2008), 139–147 | MR