Representations for the solutions and coefficients of second-order differential equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

New representations are given for the solutions and coefficients of second-order evolution differential equations in linear and nonlinear cases. The formulas obtained for linear equations have wide arbitrariness, which can be used in identification problems. We study questions of running-wave type for nonlinear one-dimensional equations.
Keywords: second-order evolution differential equations, algebraic-analytic identities.
Mots-clés : Poisson formula
@article{SJIM_2012_15_4_a1,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {Representations for the solutions and coefficients of second-order differential equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a1/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - Representations for the solutions and coefficients of second-order differential equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 17
EP  - 23
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a1/
LA  - ru
ID  - SJIM_2012_15_4_a1
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T Representations for the solutions and coefficients of second-order differential equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 17-23
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a1/
%G ru
%F SJIM_2012_15_4_a1
Yu. E. Anikonov; M. V. Neshchadim. Representations for the solutions and coefficients of second-order differential equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 17-23. http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a1/

[1] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. I”, Sib. zhurn. industr. matematiki, 14:1(45) (2011), 27–39 | Zbl

[2] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. II”, Sib. zhurn. industr. matematiki, 14:2(46) (2011), 28–33 | Zbl

[3] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[4] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya parabolicheskikh uravnenii”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 11:3 (2011), 20–35 | Zbl

[5] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi mat. nauk, 1938, no. 5, 5–41