On the stability of solutions to coefficient inverse extreme problems for the stationary convection-diffusion equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the coefficient inverse problem for the extreme stationary convection-diffusion, considered in a bounded domain with mixed boundary conditions on the boundary. The role of control is played by the velocity vector of the medium and the functions involved in the boundary conditions for the temperature. The solvability of extremal problems is proved for arbitrary weak lower semicontinuous quality functional as well as for specific quality functionals. On the basis of the analysis of the optimality system, we establish sufficient conditions on the initial data that guarantee the uniqueness and stability of optimal solutions under small perturbations of the quality functional as well as of one of the functions outside the initial boundary value problem.
Mots-clés : convection-diffusion equation, multiplicative control, existence
Keywords: temperature, velocity vector, coefficient inverse problems, uniqueness, stability.
@article{SJIM_2012_15_4_a0,
     author = {G. V. Alekseev and M. A. Shepelov},
     title = {On the stability of solutions to coefficient inverse extreme problems for the stationary convection-diffusion equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - M. A. Shepelov
TI  - On the stability of solutions to coefficient inverse extreme problems for the stationary convection-diffusion equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 3
EP  - 16
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a0/
LA  - ru
ID  - SJIM_2012_15_4_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A M. A. Shepelov
%T On the stability of solutions to coefficient inverse extreme problems for the stationary convection-diffusion equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 3-16
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a0/
%G ru
%F SJIM_2012_15_4_a0
G. V. Alekseev; M. A. Shepelov. On the stability of solutions to coefficient inverse extreme problems for the stationary convection-diffusion equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a0/

[1] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988 | MR | Zbl

[2] Samarskii A. A., Vabishevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[3] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[4] Ito K., Kunisch K., “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 14 (1997), 995–1013 | DOI | MR

[5] Agoshkov V. I., Minuk F. P., Rusakov A. S., Zalesny V. B., “Study and solution of identification problems for ninstationary 2D- and 3D-convection-diffusion equation”, Russian J. Numer. Anal. Math. Modelling, 20:1 (2005), 19–43 | DOI | MR | Zbl

[6] Alekseev G. V., Kalinina E. A., “Identifikatsiya mladshego koeffitsienta dlya statsionarnogo uravneniya konvektsii-diffuzii-reaktsii”, Sib. zhurn. industr. matematiki, 10:1 (2007), 3–16 | MR

[7] Soboleva O. V., “Obratnye ekstremalnye zadachi dlya statsionarnogo uravneniya konvektsii-diffuzii-reaktsii”, Dalnevost. mat. zhurn., 10:2 (2010), 170–184 | MR

[8] Vakhitov I. S., “Obratnaya zadacha identifikatsii neizvestnogo koeffitsienta v uravnenii diffuzii-reaktsii”, Dalnevost. mat. zhurn., 10:2 (2010), 93–105 | MR

[9] Pyatkov S. G., “On some classes of inverse problems for parabolic equations”, J. Inverse Ill-Posed Probl., 18:8 (2011), 917–934 | MR

[10] Alekseev G. V., Tereshko D. A., “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inverse Ill-Posed Probl., 6:6 (1998), 521–562 | DOI | MR | Zbl

[11] Alekseev G. V., Tereshko D. A., “Statsionarnye zadachi optimalnogo upravleniya dlya uravnenii gidrodinamiki vyazkoi teploprovodnosti zhidkosti”, Sib. zhurn. industr. matematiki, 1:2 (1998), 24–44 | MR | Zbl

[12] Lee H.-C., Imanuvilov O. Yu., “Analysis of optimal control problems for the 2-D stationary Boussinesq equations”, J. Math. Anal. Appl., 242 (2000), 191–211 | DOI | MR | Zbl

[13] Lee H. C., “Optimal control problems for the two dimensional Rayleigh–Benard type convection by a gradient method”, Japan. J. Industr. Appl. Math., 26:1 (2009), 93–121 | DOI | MR | Zbl

[14] Alekseev G. V., Tereshko D. A., “Ekstremalnye zadachi granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Prikl. mekhanika i tekhn. fizika, 51:4 (2010), 72–84 | MR

[15] Alekseev G. V., Khludnev A. M., “Ustoichivost reshenii ekstremalnykh zadach granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Sib. zhurn. industr. matematiki, 13:2 (2010), 5–18 | MR | Zbl

[16] Alekseev G. V., Tereshko D. A., “Dvukhparametricheskie ekstremalnye zadachi granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1645–1664 | MR

[17] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychisl. matematiki, 12:4 (2009), 421–434 | Zbl

[18] Agoshkov V. I., Ipatova V. M., “Razreshimost zadachi usvoeniya dannykh nablyudenii v trekhmernoi modeli dinamiki okeana”, Differents. uravneniya, 43:8 (2007), 1064–1075 | MR | Zbl

[19] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. IMM, 12, no. 2, 2006, 88–97 | MR | Zbl

[20] Korotkii A. I., Kovtunov D. A., “Optimalnoe granichnoe upravlenie sistemoi, opisyvayuschei teplovuyu konvektsiyu”, Tr. IMM, 16, no. 1, 2010, 76–101

[21] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl