Discrete approximation of continuous measures and some applications
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the best approximation (in the Kantorovich–Rubinshteĭn metric) of continuous measures on the straight line by measures concentrated at finitely many points. An algorithm to obtain such measures is constructed and the questions of their existence and uniqueness are considered. Applications of the results to some problems of mathematical economics are studied.
Keywords: continuous measures, point measures, best approximation, migration resistance.
@article{SJIM_2012_15_3_a9,
     author = {E. O. Rapoport},
     title = {Discrete approximation of continuous measures and some applications},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/}
}
TY  - JOUR
AU  - E. O. Rapoport
TI  - Discrete approximation of continuous measures and some applications
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 99
EP  - 110
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/
LA  - ru
ID  - SJIM_2012_15_3_a9
ER  - 
%0 Journal Article
%A E. O. Rapoport
%T Discrete approximation of continuous measures and some applications
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 99-110
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/
%G ru
%F SJIM_2012_15_3_a9
E. O. Rapoport. Discrete approximation of continuous measures and some applications. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 99-110. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/

[1] Rapoport E. O., “O nailuchshem priblizhenii veroyatnostnykh mer na pryamoi diskretnymi”, Optimizatsiya, 23:40 (1979), 17–24 | MR | Zbl

[2] Tirol Zh., Rynki i rynochnaya vlast: teoriya organizatsii promyshlennosti, v. 2, Ekonom. shkola, SPb., 2000

[3] Salop S., “Monopolistic Competition with Outside Goods”, Bell J. Econ., 43 (1979), 141–156 | DOI

[4] Bogomolnaia A., Le Breton M., Savvateev A., Weber S., “Stability under unanimous consent, free mobility and core”, Internat. J. Game Theory, 35 (2007), 185–204 | DOI | MR | Zbl

[5] Dreze J., Le Breton M., Savvateev A., Weber S., “Almost subsidy-free spatial pricing in a multidimensional setting”, J. Economic Theory, 143:1 (2009), 275–291 | DOI | MR

[6] Le Breton M., Musatov D., Savvateev A., Weber S., “Rethinking Alesina and Spolaore's “unidimensional world”: existence of migration proof country structures for arbitrary distributed populations”, The XIX European Workshop on General Equilibrium Theory, Krakow, 2010 http://www.ewget.uek.krakow.pl/papers/Savvateev-paper.pdf

[7] Rapoport E. O., “O kriteriyakh soglasiya, svyazannykh s nailuchshim priblizheniem mer”, Optimizatsiya, 25:42 (1980), 42–55 | MR

[8] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom prostranstve vpolne additivnykh funktsii”, Vestnik LGU. Ser. Matematika, mekhanika, astronomiya, 1958, no. 7(2), 52–59 | Zbl

[9] Mazalov V. V., Schiptsova A. V., Tokareva Yu. S., “Duopoliya Khotellinga i zadacha o razmeschenii na ploskosti”, Ekonomika i mat. metody, 10:4 (2010), 91–100