Discrete approximation of continuous measures and some applications
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 99-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the best approximation (in the Kantorovich–Rubinshteĭn metric) of continuous measures on the straight line by measures concentrated at finitely many points. An algorithm to obtain such measures is constructed and the questions of their existence and uniqueness are considered. Applications of the results to some problems of mathematical economics are studied.
Keywords: continuous measures, point measures, best approximation, migration resistance.
@article{SJIM_2012_15_3_a9,
     author = {E. O. Rapoport},
     title = {Discrete approximation of continuous measures and some applications},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/}
}
TY  - JOUR
AU  - E. O. Rapoport
TI  - Discrete approximation of continuous measures and some applications
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 99
EP  - 110
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/
LA  - ru
ID  - SJIM_2012_15_3_a9
ER  - 
%0 Journal Article
%A E. O. Rapoport
%T Discrete approximation of continuous measures and some applications
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 99-110
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/
%G ru
%F SJIM_2012_15_3_a9
E. O. Rapoport. Discrete approximation of continuous measures and some applications. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 99-110. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a9/