Diagonalization of the system of Lam\'e static equations of linear isotropic elasticity
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 87-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the simplest representation of the general solution to the system of static Lamé equations of linear isotropic elasticity in the form of a linear combination of the first derivatives of three functions that satisfy three independent harmonic equations. The representation depends on 12 free parameters choosing which it is possible to obtain various representations of the general solution and simplify the boundary value conditions for the solution of boundary value problems as well as the representation of the general solution for dynamic Lamé equations. The system of Lamé equations diagonalizes, i.e., is reduced to the solution of three independent harmonic equations. The representation implies three conservation laws and a formula for producing new solutions making it possible, given a solution, to find new solutions to the Lamé static equations by derivations. In the two-dimensional case of a plane deformation, the so-found solution immediately implies the Kolosov–Muskhelishvili representation for shifts by means of two analytic functions of complex variable. Two examples are given of applications of the proposed method of diagonalization of two-dimensional elliptic systems.
Keywords: linear elasticity, isotropic material, static Lame equation, general solution, diagonalization of an elliptic system, symmetry operators, conservation laws.
@article{SJIM_2012_15_3_a8,
     author = {N. I. Ostrosablin},
     title = {Diagonalization of the system of {Lam\'e} static equations of linear isotropic elasticity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a8/}
}
TY  - JOUR
AU  - N. I. Ostrosablin
TI  - Diagonalization of the system of Lam\'e static equations of linear isotropic elasticity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 87
EP  - 98
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a8/
LA  - ru
ID  - SJIM_2012_15_3_a8
ER  - 
%0 Journal Article
%A N. I. Ostrosablin
%T Diagonalization of the system of Lam\'e static equations of linear isotropic elasticity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 87-98
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a8/
%G ru
%F SJIM_2012_15_3_a8
N. I. Ostrosablin. Diagonalization of the system of Lam\'e static equations of linear isotropic elasticity. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 87-98. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a8/

[1] Ostrosablin N. I., “Obschee reshenie i privedenie sistemy uravnenii lineinoi izotropnoi uprugosti k diagonalnomu vidu”, Sib. zhurn. industr. matematiki, 12:2 (2009), 79–83 | MR | Zbl

[2] Ostrosablin N. I., “Kanonicheskie moduli i obschee reshenie uravnenii dvumernoi staticheskoi zadachi anizotropnoi uprugosti”, Prikl. mekhanika i tekhn. fizika, 51:3 (2010), 94–106 | MR

[3] Lure A. I., Teoriya uprugosti, Nauka, M., 1970

[4] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[5] Ostrosablin N. I., “Operatory simmetrii i obschie resheniya uravnenii lineinoi teorii uprugosti”, Prikl. mekhanika i tekhn. fizika, 36:5 (1995), 98–104 | MR | Zbl

[6] Chiriţă S., Danescu A., Ciarletta M., “On the strong ellipticity of the anisotropic linearly elastic materials”, J. Elast., 87:1 (2007), 1–27 | DOI | MR | Zbl

[7] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[8] Kiryakov P. P., Senashov S. I., Yakhno A. N., Prilozhenie simmetrii i zakonov sokhraneniya k resheniyu differentsialnykh uravnenii, Izd-vo SO RAN, Novosibirsk, 2001

[9] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966

[10] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | Zbl