A uniqueness theorem for the inverse problem for the integrodifferential electrodynamics equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 77-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding a kernel and the index of dielectric permeability for the system of integro-differential equations of electrodynamics with wave dispersion is studied. We consider a direct problem in which the external pulse current is a dipole located at a point $y$ on the boundary $\partial B$ of the unit ball $B$. The point $y$ runs over the whole boundary and is a parameter of the problem. The information available about the solution to the direct problem is the trace on $\partial B$ of the solution to the Cauchy problem given for the time moments close to the time when a wave from the dipole source arrives at the point $x$. The main result is a uniqueness theorem for the solution of the inverse problem.
Keywords: electrodynamics, inverse problem, uniqueness.
Mots-clés : dispersion
@article{SJIM_2012_15_3_a7,
     author = {A. L. Nazarov and V. G. Romanov},
     title = {A uniqueness theorem for the inverse problem for the integrodifferential electrodynamics equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a7/}
}
TY  - JOUR
AU  - A. L. Nazarov
AU  - V. G. Romanov
TI  - A uniqueness theorem for the inverse problem for the integrodifferential electrodynamics equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 77
EP  - 86
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a7/
LA  - ru
ID  - SJIM_2012_15_3_a7
ER  - 
%0 Journal Article
%A A. L. Nazarov
%A V. G. Romanov
%T A uniqueness theorem for the inverse problem for the integrodifferential electrodynamics equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 77-86
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a7/
%G ru
%F SJIM_2012_15_3_a7
A. L. Nazarov; V. G. Romanov. A uniqueness theorem for the inverse problem for the integrodifferential electrodynamics equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 77-86. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a7/

[1] Romanov V. G., “Otsenka ustoichivosti resheniya zadachi ob opredelenii yadra v integrodifferentsialnykh uravneniyakh elektrodinamiki”, Dokl. AN, 439:4 (2011), 451–455 | Zbl

[2] Romanov V. G., “Zadacha ob opredelenii yadra uravnenii elektrodinamiki dlya dispersnykh sred”, Dokl. AN, 440:4 (2011), 21–24 | MR | Zbl

[3] Romanov V. G., “Otsenka ustoichivosti resheniya v obratnoi zadache elektrodinamiki”, Sib. mat. zhurn., 52:4 (2011), 861–875 | MR | Zbl

[4] Romanov V. G., “Dvumernaya obratnaya zadacha dlya integrodifferentsialnogo uravneniya elektrodinamiki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 273–280

[5] Babich V. M., Kapilevich M. B., Mikhlin S. G. i dr., Lineinye uravneniya matematicheskoi fiziki, Ser. SMB, Nauka, M., 1964 | MR | Zbl

[6] Romanov V. G., “Struktura resheniya zadachi Koshi dlya sistemy uravnenii elektrodinamiki i uprugosti v sluchae tochechnykh istochnikov”, Sib. mat. zhurn., 36:3 (1995), 628–649 | MR | Zbl

[7] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauch. mir, M., 2005 | MR

[8] Mukhometov R. G., “Zadacha vosstanovleniya dvumernoi rimanovoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl

[9] Mukhometov R. G., Romanov V. G., “K zadache otyskaniya izotropnoi rimanovoi metriki v $n$-mernom prostranstve”, Dokl. AN SSSR, 243:1 (1978), 41–44 | MR | Zbl

[10] Bernshtein I. N., Gerver M. L., “O zadache integralnoi geometrii dlya semeistva geodezicheskikh i ob obratnoi kinematicheskoi zadache seismiki”, Dokl. AN SSSR, 243:2 (1978), 302–305 | MR

[11] Beilkin G. Ya., “Ustoichivost i edinstvennost resheniya obratnoi kinematicheskoi zadachi seismiki v mnogomernom sluchae”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Nauka, L., 1979, 3–6 | MR

[12] Romanov V. G., “Integralnaya geometriya na geodezicheskikh izotropnoi rimanovoi metriki”, Dokl. AN SSSR, 241:2 (1978), 290–293 | MR | Zbl