The problem of equilibrium of a~shallow Timoshenko-type shell containing a~through-thickness crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the nonlinear problem of the equilibrium of an elastic shallow Timoshenko-type shell containing a through-thickness crack. Boundary conditions in the form of inequalities are imposed on the curve defining the crack. We establish the unique solvability of the variational statement of the nonlinear problem of the equilibrium of the shell. We prove that, for sufficient smoothness of the solution, the initial variational statement is equivalent to the differential formulation of the problem. We deduce boundary conditions on the inner boundary that describes the crack. In the case of the zero disclosure of the crack, we prove the local infinite differentiability of the solution function with additional assumptions on the functions defining the curvatures of the shell and the external load.
Keywords: elastic shallow, crack, variational problem, impenetrability condition.
Mots-clés : Timoshenko-type shell
@article{SJIM_2012_15_3_a5,
     author = {N. P. Lazarev},
     title = {The problem of equilibrium of a~shallow {Timoshenko-type} shell containing a~through-thickness crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a5/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - The problem of equilibrium of a~shallow Timoshenko-type shell containing a~through-thickness crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 58
EP  - 69
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a5/
LA  - ru
ID  - SJIM_2012_15_3_a5
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T The problem of equilibrium of a~shallow Timoshenko-type shell containing a~through-thickness crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 58-69
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a5/
%G ru
%F SJIM_2012_15_3_a5
N. P. Lazarev. The problem of equilibrium of a~shallow Timoshenko-type shell containing a~through-thickness crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 58-69. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a5/

[1] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[2] Rabotnov Yu. I., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[3] Levin V. A., Morozov E. M., Matvienko Yu. G., Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004

[4] Slepyan L. I., Mekhanika treschin, Sudostroenie, L., 1981 | Zbl

[5] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[6] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verl., Basel–Boston–Berlin, 1997 | MR | Zbl

[7] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[8] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[9] Rudoi E. M., “Asimptotika funktsionala energii dlya smeshannoi kraevoi zadachi chetvertogo poryadka v oblasti s razrezom”, Sib. mat. zhurnal, 50:2 (2009), 430–445 | MR

[10] Khludnev A. M., “Kontaktnaya zadacha dlya pologoi obolochki s treschinoi”, Prikl. matematika i mekhanika, 59:2 (1995), 318–326 | MR | Zbl

[11] Khludnev A. M., “Extreme crack shapes in a shallow shell”, Adv. Math. Sci. Appl., 7:1 (1997), 215–223 | MR | Zbl

[12] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestnik NGU, 9:4 (2009), 51–64 | Zbl

[13] Khludnev A. M., “Zadacha o treschine na granitsezhestkogo vklyucheniya v uprugoi plastine”, Izv. RAN. Mekhanika tverdogo tela, 2010, no. 5, 98–110

[14] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo KGU, Kazan, 1975 | MR

[15] Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Nauk. dumka, Kiev, 1973 | Zbl

[16] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972 | MR

[17] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[18] Vlasov V. Z., Obschaya teoriya obolochek i ee primenenie, Gostekhizdat, M., 1949

[19] Reshetnyak Yu. G., Teoremy ustoichivosti v geometrii i analize, Nauka, Novosibirsk, 1982 | MR | Zbl

[20] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva, Nauka, M., 1988 | MR

[21] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[22] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl