Integrable hydrodynamic submodels with a~linear velocity field
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 135-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant and partially invariant solutions to equations of gas dynamics with a linear velocity field are given by a matrix satisfying a homogeneous integrable Riccati equation. The classification of solutions by the acceleration vector in the Lagrangian coordinates is carried out. We give an example of an invariant solution for which the selected volume “collapses” to an interval.
Keywords: gas dynamics equations, state equation, intregrable submodels with linear velocity field.
@article{SJIM_2012_15_3_a12,
     author = {L. Z. Urazbakhtina},
     title = {Integrable hydrodynamic submodels with a~linear velocity field},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a12/}
}
TY  - JOUR
AU  - L. Z. Urazbakhtina
TI  - Integrable hydrodynamic submodels with a~linear velocity field
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 135
EP  - 145
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a12/
LA  - ru
ID  - SJIM_2012_15_3_a12
ER  - 
%0 Journal Article
%A L. Z. Urazbakhtina
%T Integrable hydrodynamic submodels with a~linear velocity field
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 135-145
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a12/
%G ru
%F SJIM_2012_15_3_a12
L. Z. Urazbakhtina. Integrable hydrodynamic submodels with a~linear velocity field. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 135-145. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a12/

[1] Ovsyannikov L. V., “Programma “Podmodeli”. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[2] Khabirov S. V., Optimalnye sistemy podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki, Preprint, In-t mekhaniki UNTs RAN, Ufa, 1998, 33 pp.

[3] Golovin S. V., Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Preprint No 5-96, In-t gidrodinamiki SO RAN, Novosibirsk, 1996, 31 pp.

[4] Cherevko A. A., Issledovanie differentsialnykh uravnenii vikhrya Ovsyannikova v gazovoi dinamike, Dis. $\dots$ kand. fiz.-mat. nauk, Novosibirsk, 2005, 164 pp.

[5] Makarevich E. V., “Optimalnye sistemy podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravneniya sostoyaniya s razdelennoi plotnostyu”, Sib. elektron. mat. izvestiya, 8 (2011), 19–38 | MR

[6] Khabirov S. V., “Neregulyarnye chastichno invariantnye resheniya ranga 2 defekta 1 uravnenii gazovoi dinamiki”, Sib. mat. zhurn., 43:5 (2002), 1168–1181 | MR | Zbl

[7] Khabirov S. V., “Ploskie dvizheniya gaza bez raskhozhdeniya s lineinym polem skorostei”, Ufimsk. mat. zhurn., 2:3 (2010), 113–119